Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions sage/gen_exhaustive_groups.sage
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
# Define field size and field
P = 2^256 - 2^32 - 977
F = GF(P)
BETA = F(0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee)

assert(BETA != F(1) and BETA^3 == F(1))

orders_done = set()
results = {}
first = True
for b in range(1, P):
# There are only 6 curves (up to isomorphism) of the form y^2=x^3+B. Stop once we have tried all.
if len(orders_done) == 6:
break

E = EllipticCurve(F, [0, b])
print("Analyzing curve y^2 = x^3 + %i" % b)
n = E.order()
# Skip curves with an order we've already tried
if n in orders_done:
print("- Isomorphic to earlier curve")
continue
orders_done.add(n)
# Skip curves isomorphic to the real secp256k1
if n.is_pseudoprime():
print(" - Isomorphic to secp256k1")
continue

print("- Finding subgroups")

# Find what prime subgroups exist
for f, _ in n.factor():
print("- Analyzing subgroup of order %i" % f)
# Skip subgroups of order >1000
if f < 4 or f > 1000:
print(" - Bad size")
continue

# Iterate over X coordinates until we find one that is on the curve, has order f,
# and for which curve isomorphism exists that maps it to X coordinate 1.
for x in range(1, P):
# Skip X coordinates not on the curve, and construct the full point otherwise.
if not E.is_x_coord(x):
continue
G = E.lift_x(F(x))

print(" - Analyzing (multiples of) point with X=%i" % x)

# Skip points whose order is not a multiple of f. Project the point to have
# order f otherwise.
if (G.order() % f):
print(" - Bad order")
continue
G = G * (G.order() // f)

# Find lambda for endomorphism. Skip if none can be found.
lam = None
for l in Integers(f)(1).nth_root(3, all=True):
if int(l)*G == E(BETA*G[0], G[1]):
lam = int(l)
break
if lam is None:
print(" - No endomorphism for this subgroup")
break

# Now look for an isomorphism of the curve that gives this point an X
# coordinate equal to 1.
# If (x,y) is on y^2 = x^3 + b, then (a^2*x, a^3*y) is on y^2 = x^3 + a^6*b.
# So look for m=a^2=1/x.
m = F(1)/G[0]
if not m.is_square():
print(" - No curve isomorphism maps it to a point with X=1")
continue
a = m.sqrt()
rb = a^6*b
RE = EllipticCurve(F, [0, rb])

# Use as generator twice the image of G under the above isormorphism.
# This means that generator*(1/2 mod f) will have X coordinate 1.
RG = RE(1, a^3*G[1]) * 2
# And even Y coordinate.
if int(RG[1]) % 2:
RG = -RG
assert(RG.order() == f)
assert(lam*RG == RE(BETA*RG[0], RG[1]))

# We have found curve RE:y^2=x^3+rb with generator RG of order f. Remember it
results[f] = {"b": rb, "G": RG, "lambda": lam}
print(" - Found solution")
break

print("")

print("")
print("")
print("/* To be put in src/group_impl.h: */")
first = True
for f in sorted(results.keys()):
b = results[f]["b"]
G = results[f]["G"]
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
first = False
print("static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(")
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[0]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(G[1]) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(");")
print("static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(")
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x," % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4)))
print(" 0x%08x, 0x%08x, 0x%08x, 0x%08x" % tuple((int(b) >> (32 * (7 - i))) & 0xffffffff for i in range(4, 8)))
print(");")
print("# else")
print("# error No known generator for the specified exhaustive test group order.")
print("# endif")

print("")
print("")
print("/* To be put in src/scalar_impl.h: */")
first = True
for f in sorted(results.keys()):
lam = results[f]["lambda"]
print("# %s EXHAUSTIVE_TEST_ORDER == %i" % ("if" if first else "elif", f))
first = False
print("# define EXHAUSTIVE_TEST_LAMBDA %i" % lam)
print("# else")
print("# error No known lambda for the specified exhaustive test group order.")
print("# endif")
print("")
11 changes: 11 additions & 0 deletions src/group.h
Original file line number Diff line number Diff line change
Expand Up @@ -139,4 +139,15 @@ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_g
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);

/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve.
*
* In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the
* group, and this function returns always true.
*
* When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a
* (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this
* function checks whether a point that is on the curve is in fact also in that subgroup.
*/
static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge);

#endif /* SECP256K1_GROUP_H */
116 changes: 52 additions & 64 deletions src/group_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,49 +11,38 @@
#include "field.h"
#include "group.h"

/* These points can be generated in sage as follows:
/* These exhaustive group test orders and generators are chosen such that:
* - The field size is equal to that of secp256k1, so field code is the same.
* - The curve equation is of the form y^2=x^3+B for some constant B.
* - The subgroup has a generator 2*P, where P.x=1.
* - The subgroup has size less than 1000 to permit exhaustive testing.
* - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y).
*
* 0. Setup a worksheet with the following parameters.
* b = 4 # whatever CURVE_B will be set to
* F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F)
* C = EllipticCurve ([F (0), F (b)])
*
* 1. Determine all the small orders available to you. (If there are
* no satisfactory ones, go back and change b.)
* print C.order().factor(limit=1000)
*
* 2. Choose an order as one of the prime factors listed in the above step.
* (You can also multiply some to get a composite order, though the
* tests will crash trying to invert scalars during signing.) We take a
* random point and scale it to drop its order to the desired value.
* There is some probability this won't work; just try again.
* order = 199
* P = C.random_point()
* P = (int(P.order()) / int(order)) * P
* assert(P.order() == order)
*
* 3. Print the values. You'll need to use a vim macro or something to
* split the hex output into 4-byte chunks.
* print "%x %x" % P.xy()
* These parameters are generated using sage/gen_exhaustive_groups.sage.
*/
#if defined(EXHAUSTIVE_TEST_ORDER)
# if EXHAUSTIVE_TEST_ORDER == 199
# if EXHAUSTIVE_TEST_ORDER == 13
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069,
0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18,
0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868,
0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED
0xc3459c3d, 0x35326167, 0xcd86cce8, 0x07a2417f,
0x5b8bd567, 0xde8538ee, 0x0d507b0c, 0xd128f5bb,
0x8e467fec, 0xcd30000a, 0x6cc1184e, 0x25d382c2,
0xa2f4494e, 0x2fbe9abc, 0x8b64abac, 0xd005fb24
);

static const int CURVE_B = 4;
# elif EXHAUSTIVE_TEST_ORDER == 13
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
0x3d3486b2, 0x159a9ca5, 0xc75638be, 0xb23a69bc,
0x946a45ab, 0x24801247, 0xb4ed2b8e, 0x26b6a417
);
# elif EXHAUSTIVE_TEST_ORDER == 199
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0,
0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15,
0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e,
0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac
0x226e653f, 0xc8df7744, 0x9bacbf12, 0x7d1dcbf9,
0x87f05b2a, 0xe7edbd28, 0x1f564575, 0xc48dcf18,
0xa13872c2, 0xe933bb17, 0x5d9ffd5b, 0xb5b6e10c,
0x57fe3c00, 0xbaaaa15a, 0xe003ec3e, 0x9c269bae
);
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(
0x2cca28fa, 0xfc614b80, 0x2a3db42b, 0x00ba00b1,
0xbea8d943, 0xdace9ab2, 0x9536daea, 0x0074defb
);
static const int CURVE_B = 2;
# else
# error No known generator for the specified exhaustive test group order.
# endif
Expand All @@ -68,7 +57,7 @@ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);

static const int CURVE_B = 7;
static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 7);
#endif

static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
Expand Down Expand Up @@ -219,14 +208,13 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
}

static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
secp256k1_fe x2, x3;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt(&r->y, &c);
secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
return secp256k1_fe_sqrt(&r->y, &x3);
}

static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
Expand Down Expand Up @@ -269,36 +257,15 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
return a->infinity;
}

static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
secp256k1_fe y2, x3, z2, z6;
if (a->infinity) {
return 0;
}
/** y^2 = x^3 + 7
* (Y/Z^3)^2 = (X/Z^2)^3 + 7
* Y^2 / Z^6 = X^3 / Z^6 + 7
* Y^2 = X^3 + 7*Z^6
*/
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, CURVE_B);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}

static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3, c;
secp256k1_fe y2, x3;
if (a->infinity) {
return 0;
}
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_set_int(&c, CURVE_B);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_add(&x3, &secp256k1_fe_const_b);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
Expand Down Expand Up @@ -704,4 +671,25 @@ static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
return secp256k1_fe_is_quad_var(&yz);
}

static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
#ifdef EXHAUSTIVE_TEST_ORDER
secp256k1_gej out;
int i;

/* A very simple EC multiplication ladder that avoids a dependecy on ecmult. */
secp256k1_gej_set_infinity(&out);
for (i = 0; i < 32; ++i) {
secp256k1_gej_double_var(&out, &out, NULL);
if ((((uint32_t)EXHAUSTIVE_TEST_ORDER) >> (31 - i)) & 1) {
secp256k1_gej_add_ge_var(&out, &out, ge, NULL);
}
}
return secp256k1_gej_is_infinity(&out);
#else
(void)ge;
/* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */
return 1;
#endif
}

#endif /* SECP256K1_GROUP_IMPL_H */
1 change: 1 addition & 0 deletions src/modules/extrakeys/Makefile.am.include
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
include_HEADERS += include/secp256k1_extrakeys.h
noinst_HEADERS += src/modules/extrakeys/tests_impl.h
noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h
noinst_HEADERS += src/modules/extrakeys/main_impl.h
3 changes: 3 additions & 0 deletions src/modules/extrakeys/main_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@ int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_p
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
return 0;
}
if (!secp256k1_ge_is_in_correct_subgroup(&pk)) {
return 0;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
Expand Down
68 changes: 68 additions & 0 deletions src/modules/extrakeys/tests_exhaustive_impl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/**********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/

#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_
#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_

#include "src/modules/extrakeys/main_impl.h"
#include "include/secp256k1_extrakeys.h"

static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) {
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1];
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1];
int parities[EXHAUSTIVE_TEST_ORDER - 1];
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32];
int i;

for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) {
secp256k1_fe fe;
secp256k1_scalar scalar_i;
unsigned char buf[33];
int parity;

secp256k1_scalar_set_int(&scalar_i, i);
secp256k1_scalar_get_b32(buf, &scalar_i);

/* Construct pubkey and keypair. */
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf));
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf));

/* Construct serialized xonly_pubkey from keypair. */
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1]));
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1]));

/* Parse the xonly_pubkey back and verify it matches the previously serialized value. */
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1]));
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
CHECK(memcmp(xonly_pubkey_bytes[i - 1], buf, 32) == 0);

/* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1]));
CHECK(parity == parities[i - 1]);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1]));
CHECK(memcmp(xonly_pubkey_bytes[i - 1], buf, 32) == 0);

/* Compare the xonly_pubkey bytes against the precomputed group. */
secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]);
CHECK(secp256k1_fe_equal_var(&fe, &group[i].x));

/* Check the parity against the precomputed group. */
fe = group[i].y;
secp256k1_fe_normalize_var(&fe);
CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]);

/* Verify that the higher half is identical to the lower half mirrored. */
if (i > EXHAUSTIVE_TEST_ORDER / 2) {
CHECK(memcmp(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0);
CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]);
}
}

/* TODO: keypair/xonly_pubkey tweak tests */
}

#endif
Loading