-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updates to run spectral clustering in one shot
- Loading branch information
Showing
4 changed files
with
295 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
nibabel==3.2.2 | ||
numpy>=1.22.0 | ||
pillow>=4.3.0 | ||
nibabel | ||
numpy | ||
pillow | ||
scipy | ||
setuptools | ||
wheel>=0.31 | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,290 @@ | ||
# LICENSE | ||
# | ||
# _This file is Copyright 2018 by the Image Processing and Analysis Group (BioImage Suite Team). Dept. of Radiology & Biomedical Imaging, Yale School of Medicine._ | ||
# | ||
# BioImage Suite Web is licensed under the Apache License, Version 2.0 (the "License"); | ||
# | ||
# - you may not use this software except in compliance with the License. | ||
# - You may obtain a copy of the License at [http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0) | ||
# | ||
# __Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License.__ | ||
# | ||
# ENDLICENSE | ||
|
||
import biswebpython.core.bis_basemodule as bis_basemodule | ||
import biswebpython.core.bis_baseutils as bis_baseutils | ||
import biswebpython.core.bis_objects as bis_objects | ||
from biswebpython.modules.extractImagePatches import * | ||
import os | ||
|
||
class imageSpectralClustering(bis_basemodule.baseModule): | ||
|
||
def __init__(self): | ||
super().__init__(); | ||
self.name='imageDistanceMatrix'; | ||
|
||
def createDescription(self): | ||
|
||
return { | ||
"name": "compute spectral Imaging CLustering (Calls matlab code)", | ||
"description": "Given an image and a mask compute the image distance matrix, the index map and a matlab script to run the clustering code", | ||
"author": "Xenios Papademetris and Xilin Shen", | ||
"version": "1.0", | ||
"inputs": [ | ||
{ | ||
"type": "image", | ||
"name": "Input Image", | ||
"description": "The input (timeseries) image", | ||
"varname": "input", | ||
"shortname" : "i", | ||
"required": True | ||
}, | ||
{ | ||
"type": "image", | ||
"name": "Objectmap Image", | ||
"description": "The objectmap/mask image", | ||
"varname": "mask", | ||
"shortname" : "m", | ||
"required": False | ||
}, | ||
], | ||
"outputs": [ | ||
{ | ||
'type': 'matrix', | ||
'name': 'Output Matrix', | ||
'description': 'the output distance matrix', | ||
'varname': 'output', | ||
'shortname': 'o', | ||
'required': True, | ||
'extension' : ".binmatr" | ||
}, | ||
{ | ||
'type': 'image', | ||
'name': 'IndexMap Image', | ||
'description': 'the output indexmap image', | ||
'varname': 'indexmap', | ||
'shortname': 'x', | ||
'required': False, | ||
'extension' : ".nii.gz" | ||
} | ||
], | ||
"params": [ | ||
{ | ||
"name": "useradius", | ||
"description": "If true use radius else sparsity", | ||
"varname": "useradius", | ||
"type": "boolean", | ||
"default": True | ||
}, | ||
{ | ||
"name": "NumThreads", | ||
"description": "The number of threads to use", | ||
"type": "int", | ||
"default": 1, | ||
"lowbound": 1, | ||
"highbound": 10, | ||
"varname": "numthreads" | ||
}, | ||
{ | ||
"name": "Radius", | ||
"description": "The radius constraint (if useradius=true)", | ||
"type": "float", | ||
"default": 4.0, | ||
"lowbound": 0.1, | ||
"highbound": 10.0, | ||
"varname": "radius" | ||
}, | ||
{ | ||
"name": "Sparsity", | ||
"description": "The sparsity constraint (if useradius=false)", | ||
"type": "float", | ||
"default": 0.01, | ||
"lowbound": 0.01, | ||
"highbound": 0.2, | ||
"varname": "sparsity" | ||
}, | ||
{ | ||
"name": "Numpatches", | ||
"description": "Number of patches to extract (default=0 i.e. use whole image as opposed to patches)", | ||
"type": "int", | ||
"default": 0, | ||
"lowbound": 0, | ||
"highbound": 65536, | ||
"varname": "numpatches" | ||
}, | ||
{ | ||
"name": "Smoothness", | ||
"description": "The weight of the euclidean smoothness constraint for clustering", | ||
"type": "float", | ||
"default": 0.01, | ||
"lowbound": 0.0, | ||
"highbound": 10.0, | ||
"varname": "smoothness" | ||
}, | ||
{ | ||
"name": "Numclusters", | ||
"description": "Number of clusters", | ||
"type": "int", | ||
"default": 3, | ||
"lowbound": 2, | ||
"highbound": 500, | ||
"varname": "numclusters" | ||
}, | ||
{ | ||
"name": "Patchsize", | ||
"description": "Patch size (in voxels) (default=32) if using patches", | ||
"type": "int", | ||
"default": 32, | ||
"lowbound": 2, | ||
"highbound": 256, | ||
"varname": "patchsize" | ||
}, | ||
{ | ||
"name": "3d", | ||
"description": "if true 3d patches (default=false) if using patches", | ||
"priority": 1000, | ||
"advanced": False, | ||
"gui": "check", | ||
"varname": "threed", | ||
"type": 'boolean', | ||
"default": False, | ||
}, | ||
{ | ||
"name": "Matlab script", | ||
"description": "name of output matlab script", | ||
"type": "string", | ||
"default": None, | ||
"varname": "script" | ||
}, | ||
{ | ||
"name": "Matlab cluster output image", | ||
"description": "name of matlab output cluster image. If None then script+.nii.gz", | ||
"type": "string", | ||
"default": None, | ||
"varname": "clusteroutput" | ||
}, | ||
{ | ||
"name": "Matlab path", | ||
"description": "path to bisweb matlab library", | ||
"type": "string", | ||
"default": None, | ||
"varname": "matlabpath" | ||
}, | ||
|
||
{ | ||
"name": "runmatlab", | ||
"description": "If true try to execute matlab", | ||
"varname": "runmatlab", | ||
"type": "boolean", | ||
"default": True | ||
}, | ||
bis_baseutils.getDebugParam() | ||
], | ||
} | ||
|
||
|
||
def saveOutputs(self,inputparameters={}): | ||
f=super().saveOutputs(inputparameters); | ||
if f==False: | ||
return False; | ||
|
||
|
||
vals=self.innervalues; | ||
if vals['script'] is None: | ||
return true; | ||
|
||
|
||
matlabpath=vals['matlabpath']; | ||
clusteroutput=vals['clusteroutput']; | ||
|
||
if matlabpath is None: | ||
matlabpath=os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))+'/matlab'; | ||
print('++++\t auto setting matlabpath to',matlabpath) | ||
|
||
if clusteroutput is None: | ||
clusteroutput=vals['script']+".nii.gz"; | ||
print('++++\t auto setting clusteroutput to',clusteroutput) | ||
else: | ||
print('++++\t using clusteroutput as',clusteroutput); | ||
|
||
out="addpath('"+matlabpath+"');\n"; | ||
out=out+"bispath();\n"; | ||
out=out+"dist=bis_matrix();\n" | ||
out=out+"w=dist.loadbinary('"+self.outputs['output'].filename+"');\n"; | ||
out=out+"indexmap=bis_image('"+self.outputs['indexmap'].filename+"');\n"; | ||
out=out+"indexmap.print();"; | ||
out=out+"output=bis_distmatrixparcellation(w,indexmap,"+str(vals['numclusters'])+","+str(vals['smoothness'])+");\n" | ||
out=out+"output.save('"+clusteroutput+"');\nexit\n"; | ||
try: | ||
|
||
with open(vals['script'], 'w') as fp: | ||
fp.write(out); | ||
print('++++\t Saved matlab script in',vals['script']); | ||
except: | ||
print("Failed to open",vals['script']); | ||
return False; | ||
|
||
|
||
cmd="matlab -nodisplay -nosplash -nodesktop -r \"run('"+vals['script']+"');exit;\""; | ||
print('++++ to run matlab type:',cmd) | ||
if vals['runmatlab']: | ||
print(out); | ||
os.system(cmd); | ||
|
||
return True; | ||
|
||
|
||
|
||
def directInvokeAlgorithm(self,vals): | ||
print('oooo invoking: imageDistanceMatrix with vals', vals); | ||
|
||
|
||
if (vals['numpatches']>0): | ||
print('_____________________________________________'); | ||
print('____ First extracting patches') | ||
|
||
patchExtractor=extractImagePatches(); | ||
patchExtractor.execute({ 'input' : self.inputs['input'] }, | ||
{ 'numpatches' : vals['numpatches'], | ||
'patchsize' : vals['patchsize'], | ||
'threed' : vals['threed'], | ||
'ordered' : False | ||
}); | ||
self.inputs['input']=patchExtractor.getOutputObject('output'); | ||
self.inputs['mask']=0; | ||
print('_____________________________________________'); | ||
|
||
|
||
paramobj= { | ||
'numthreads' : vals['numthreads'], | ||
'sparsity' : vals['sparsity'], | ||
'radius' : vals['radius'], | ||
'useradius' : self.parseBoolean(vals['useradius']) | ||
|
||
}; | ||
|
||
out=bis_baseutils.getDynamicLibraryWrapper().computeImageDistanceMatrixWASM(self.inputs['input'], | ||
self.inputs['mask'], | ||
paramobj, | ||
self.parseBoolean(vals['debug'])); | ||
self.outputs['output']=bis_objects.bisMatrix(); | ||
self.outputs['output'].create(out); | ||
|
||
self.outputs['indexmap']=bis_baseutils.getDynamicLibraryWrapper().computeImageIndexMapWASM(self.inputs['mask'], | ||
self.parseBoolean(vals['debug'])); | ||
|
||
# Propagate Orientation in this weird matrix to image thing | ||
self.outputs['indexmap'].affine=self.inputs['mask'].affine; | ||
|
||
self.innervalues=vals; | ||
|
||
|
||
return True | ||
|
||
|
||
|
||
|