Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions solvers/subgradient_descent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from benchopt import BaseSolver, safe_import_context

with safe_import_context() as import_ctx:
import numpy as np


def quantile_gradient(X, y, reg=0, q=0.5, base_lr=0.1, momentum=0.9,
momentum_decay=0.2, lr_decay=0.8, max_steps=1000,
rel_tol=1e-2, abs_tol=1e-4, patience=10,
intercept=True, verbose=False):
lr = base_lr * np.std(y)
prev_loss = np.infty
min_loss = np.infty
patience_steps = 0
n, m = X.shape
beta = np.zeros(m + 1)
cum_grad = beta * 0

for i in range(max_steps):
resid = y - np.dot(X, beta[:m]) - beta[-1] * intercept
coef = beta[:m]
loss = np.mean(
(resid > 0) * resid * q - (resid < 0) * resid * (1 - q)
) + reg * sum((coef > 0) * coef - (coef < 0) * coef)
if verbose:
print(loss)
if loss > prev_loss:
cum_grad *= momentum_decay
lr *= lr_decay
if loss < min_loss * (1-rel_tol) or loss < min_loss - abs_tol:
min_loss = loss
patience_steps = 0
else:
patience_steps += 1
if patience_steps > patience:
if verbose:
print(f'early stopping after {i} steps')
break
prev_loss = loss
dldpred = (resid > 0) * q - (resid < 0) * (1 - q)
grad = np.concatenate([
np.dot(dldpred, X) /
len(resid) - reg * ((coef > 0) * 1 - (coef < 0) * 1),
[np.mean(dldpred)]
])
cum_grad = cum_grad * momentum + grad
delta = cum_grad * lr
if reg:
# small coefficients with small gradient stay small
delta[:m][(coef == 0) & (np.abs(delta[:m]) < reg)] = 0
beta += delta
if reg:
# coefficient that would change sign just stay zero
beta[:m][beta[:m] * coef < 0] = 0
if intercept:
return beta[-1], beta[:m]
return beta


class Solver(BaseSolver):
name = 'Python-subgradient'

stop_strategy = 'iteration'
support_sparse = False

def set_objective(self, X, y, reg, quantile):
self.X, self.y, self.reg, self.quantile = X, y, reg, quantile

def run(self, n_iter):
self.intercept_, self.coef_ = quantile_gradient(
self.X, self.y, self.reg, self.quantile, max_steps=n_iter
)

def get_result(self):
params = np.concatenate([[self.intercept_], self.coef_], axis=0)
return params