Skip to content

ben0919/ORFormer

Repository files navigation

ORFormer (WACV 2025 Oral)

This is the offcial repository of WACV 2025 Oral paper ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection.

Project Website

arxiv Paper

WACV Paper

Architecture

Overview

Quantitative Results

Results

Training Commands

All experiments can be run on a NVIDIA GTX1080Ti(11Gb RAM).

Quantized Heatmap Generator

#WFLW
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.0007 --batch_size 128 --alpha 100
#300W
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.0008 --batch_size 128 --alpha 1000
#COFW
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.0007 --batch_size 128 --alpha 100

ORFormer

#WFLW
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 50 --vit ORFormer
#300W
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 100 --vit ORFormer
#COFW
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 50 --vit ORFormer

Integration with FLD Methods

#WFLW
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer
#300W
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer
#COFW
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer

Performance

WFLW 300W COFW Training Inference
Quantized Heatmap Generator L2 Loss: 26.72 L2 Loss: 14.12 L2 Loss: 30.32 train_heatmap_generator.py test_heatmap_generator.py
ORFormer L2 Loss: 20.22 L2 Loss: 10.97 L2 Loss: 23.06 train_ORFormer.py test_ORFormer.py
Integration NME Loss: 3.86 NME Loss: 2.90 NME Loss: 4.46 train_HGNet_with_ORFormer.py test_HGNet_with_ORFormer.py

Links

Datasets

weights

Citation

@InProceedings{Chiang_2025_WACV,
    author    = {Chiang, Jui-Che and Hu, Hou-Ning and Hou, Bo-Syuan and Tseng, Chia-Yu and Liu, Yu-Lun and Chen, Min-Hung and Lin, Yen-Yu},
    title     = {ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection},
    booktitle = {Proceedings of the Winter Conference on Applications of Computer Vision (WACV)},
    month     = {February},
    year      = {2025},
    pages     = {784-793}
}

Acknowledgement

This repository is build on top of SLPT, ADNet, STAR and vit_pytorch. Huge appreciation for the excellent codebases provided by these projects!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages