This is the offcial repository of WACV 2025 Oral paper ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection.
All experiments can be run on a NVIDIA GTX1080Ti(11Gb RAM).
#WFLW
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.0007 --batch_size 128 --alpha 100
#300W
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.0008 --batch_size 128 --alpha 1000
#COFW
CUDA_VISIBLE_DEVICES=x python train_heatmap_generator.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.0007 --batch_size 128 --alpha 100#WFLW
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 50 --vit ORFormer
#300W
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 100 --vit ORFormer
#COFW
CUDA_VISIBLE_DEVICES=x python train_ORFormer.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.0001 --batch_size 64 --alpha 50 --vit ORFormer#WFLW
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset WFLW --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer
#300W
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset 300W --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer
#COFW
CUDA_VISIBLE_DEVICES=x python train_HGNet_with_ORFormer.py --dataset COFW --name [run_name] --resultDir [result_dir] --lr 0.001 --batch_size 16 --alpha 0.05 --heatmap ORFormer| WFLW | 300W | COFW | Training | Inference | |
|---|---|---|---|---|---|
| Quantized Heatmap Generator | L2 Loss: 26.72 | L2 Loss: 14.12 | L2 Loss: 30.32 | train_heatmap_generator.py | test_heatmap_generator.py |
| ORFormer | L2 Loss: 20.22 | L2 Loss: 10.97 | L2 Loss: 23.06 | train_ORFormer.py | test_ORFormer.py |
| Integration | NME Loss: 3.86 | NME Loss: 2.90 | NME Loss: 4.46 | train_HGNet_with_ORFormer.py | test_HGNet_with_ORFormer.py |
@InProceedings{Chiang_2025_WACV,
author = {Chiang, Jui-Che and Hu, Hou-Ning and Hou, Bo-Syuan and Tseng, Chia-Yu and Liu, Yu-Lun and Chen, Min-Hung and Lin, Yen-Yu},
title = {ORFormer: Occlusion-Robust Transformer for Accurate Facial Landmark Detection},
booktitle = {Proceedings of the Winter Conference on Applications of Computer Vision (WACV)},
month = {February},
year = {2025},
pages = {784-793}
}
This repository is build on top of SLPT, ADNet, STAR and vit_pytorch. Huge appreciation for the excellent codebases provided by these projects!

