-
Notifications
You must be signed in to change notification settings - Fork 64
Description
Hi NanoSim team,
I'm encountering an issue when trying to run NanoSim with a pre-trained model. I'm using the human_giab_hg002_sub1M_kitv14_dorado pre-trained model, but I keep getting the following error:
FileNotFoundError: [Errno 2] No such file or directory: '/home/fmartino/NanoSim/pre-trained_models/human_giab_hg002_sub1M_kitv14_dorado_strandness_rate'
Steps I've taken:
I downloaded the pre-trained model human_giab_hg002_sub1M_kitv14_dorado.tar.gz from the repository.
I extracted the files using tar -xzvf human_giab_hg002_sub1M_kitv14_dorado.tar.gz.
I verified that the files are present in the folder:
(nanosim):~/NanoSim/pre-trained_models/human_giab_hg002_sub1M_kitv14_dorado$ ls
hg002_nanosim_sub1M_aligned_region.pkl hg002_nanosim_sub1M_gap_length.pkl hg002_nanosim_sub1M_model_profile human_giab_hg002_sub1M_kitv14_dorado_error_rate.tsv
hg002_nanosim_sub1M_chimeric_info hg002_nanosim_sub1M_ht_length.pkl hg002_nanosim_sub1M_reads_alignment_rate human_giab_hg002_sub1M_kitv14_dorado_strandness_rate
hg002_nanosim_sub1M_error_markov_model hg002_nanosim_sub1M_ht_ratio.pkl hg002_nanosim_sub1M_unaligned_length.pkl
hg002_nanosim_sub1M_first_match.hist hg002_nanosim_sub1M_match_markov_model human_giab_hg002_sub1M_kitv14_dorado_aligned_reads.pkl
I renamed the files to match what NanoSim expects and same error.
I ran the simulation command:
simulator.py genome \
-rg /home/fmartino/Ref_seq/Simulation_DC0135_anellos/Annelovirus_AllRefs.part_AB303554_circular.fasta \
-o /home/fmartino/Ref_seq/Simulation_DC0135_anellos/simulation_Annelovirus_AllRefs.part_AB303554 \
-n 55 \
-dna_type circular \
-c /home/fmartino/NanoSim/pre-trained_models/human_giab_hg002_sub1M_kitv14_dorado/ \
-med 1000 \
-sd 0.2 \
--fastq \
-t 22
Despite these steps, I still get the FileNotFoundError. Could you please help me understand what I might be doing wrong?
Additional information:
NanoSim version: Installed via conda install -c bioconda nanosim.
Environment: Python 3.7, Conda environment.
Pre-trained model: human_giab_hg002_sub1M_kitv14_dorado.tar.gz. (I also tried with the v3.2.1)
Thank you for your help!
Best regards,
Flor