Skip to content

Develop care underflow #64

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions bayesml/gaussianmixture/_gaussianmixture.py
Original file line number Diff line number Diff line change
Expand Up @@ -724,11 +724,19 @@ def _calc_vl(self):

def _calc_n_x_bar_s(self,x):
self.ns[:] = self.r_vecs.sum(axis=0)
self.x_bar_vecs[:] = (self.r_vecs[:,:,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[:,np.newaxis]
self.s_mats[:] = np.sum(self.r_vecs[:,:,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,np.newaxis,:]),
axis=0) / self.ns[:,np.newaxis,np.newaxis]
indices = self.ns.astype(bool)
if np.all(indices):
self.x_bar_vecs[:] = (self.r_vecs[:,:,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[:,np.newaxis]
self.s_mats[:] = np.sum(self.r_vecs[:,:,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,np.newaxis,:]),
axis=0) / self.ns[:,np.newaxis,np.newaxis]
else:
self.x_bar_vecs[indices] = (self.r_vecs[:,indices,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[indices,np.newaxis]
self.s_mats[indices] = np.sum(self.r_vecs[:,indices,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs[indices])[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs[indices])[:,:,np.newaxis,:]),
axis=0) / self.ns[indices,np.newaxis,np.newaxis]

def _init_random_responsibility(self,x):
self.r_vecs[:] = self.rng.dirichlet(np.ones(self.c_num_classes),self.r_vecs.shape[0])
Expand Down
30 changes: 17 additions & 13 deletions bayesml/hiddenmarkovnormal/_hiddenmarkovnormal.py
Original file line number Diff line number Diff line change
Expand Up @@ -837,23 +837,27 @@ def _calc_prior_char(self):
def _calc_n_m_x_bar_s(self,x):
self.ns[:] = self.gamma_vecs.sum(axis=0)
self.ms[:] = self.xi_mats.sum(axis=0) # xi must be initialized as a zero matrix
self.x_bar_vecs[:] = (self.gamma_vecs[:,:,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[:,np.newaxis]
self.s_mats[:] = np.sum(self.gamma_vecs[:,:,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,np.newaxis,:]),
axis=0) / self.ns[:,np.newaxis,np.newaxis]
indices = self.ns.astype(bool)
if np.all(indices):
self.x_bar_vecs[:] = (self.gamma_vecs[:,:,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[:,np.newaxis]
self.s_mats[:] = np.sum(self.gamma_vecs[:,:,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs)[:,:,np.newaxis,:]),
axis=0) / self.ns[:,np.newaxis,np.newaxis]
else:
self.x_bar_vecs[indices] = (self.gamma_vecs[:,indices,np.newaxis] * x[:,np.newaxis,:]).sum(axis=0) / self.ns[indices,np.newaxis]
self.s_mats[indices] = np.sum(self.gamma_vecs[:,indices,np.newaxis,np.newaxis]
* ((x[:,np.newaxis,:] - self.x_bar_vecs[indices])[:,:,:,np.newaxis]
@ (x[:,np.newaxis,:] - self.x_bar_vecs[indices])[:,:,np.newaxis,:]),
axis=0) / self.ns[indices,np.newaxis,np.newaxis]

def _calc_q_pi_char(self):
self._ln_pi_tilde_vec[:] = digamma(self.hn_eta_vec) - digamma(self.hn_eta_vec.sum())
self._pi_tilde_vec[:] = np.exp(self._ln_pi_tilde_vec)
# self._pi_tilde_vec[:] = np.exp(self._ln_pi_tilde_vec - self._ln_pi_tilde_vec.max())
# self._pi_tilde_vec[:] /= self._pi_tilde_vec.sum()
self._pi_tilde_vec[:] = np.exp(self._ln_pi_tilde_vec - self._ln_pi_tilde_vec.max())

def _calc_q_a_char(self):
self._ln_a_tilde_mat[:] = digamma(self.hn_zeta_vecs) - digamma(self.hn_zeta_vecs.sum(axis=1,keepdims=True))
self._a_tilde_mat[:] = np.exp(self._ln_a_tilde_mat)
# self._a_tilde_mat[:] = np.exp(self._ln_a_tilde_mat - self._ln_a_tilde_mat.max(axis=1,keepdims=True))
# self._a_tilde_mat[:] /= self._a_tilde_mat.sum(axis=1,keepdims=True)
self._a_tilde_mat[:] = np.exp(self._ln_a_tilde_mat - self._ln_a_tilde_mat.max())
self._ln_c_hn_zeta_vecs_sum = np.sum(gammaln(self.hn_zeta_vecs.sum(axis=1)) - gammaln(self.hn_zeta_vecs).sum(axis=1))

def _calc_q_lambda_char(self):
Expand Down Expand Up @@ -906,8 +910,8 @@ def _calc_vl(self):

# E[ln q(Z|pi)]
self._vl_q_z = (-(self.gamma_vecs * self._ln_rho).sum()
-(self.ms * self._ln_a_tilde_mat).sum()
-(self.gamma_vecs[0] * self._ln_pi_tilde_vec).sum()
-(self.ms * (self._ln_a_tilde_mat - self._ln_a_tilde_mat.max())).sum()
-(self.gamma_vecs[0] * (self._ln_pi_tilde_vec - self._ln_pi_tilde_vec.max())).sum()
+np.log(self._cs).sum())

# E[ln q(pi)]
Expand Down