Skip to content

update posterior distribution and predictive distribution #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 51 additions & 23 deletions bayesml/hiddenmarkovnormal/hiddenmarkovnormal.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@ The stochastic data generative model is as follows:
* $K \in \mathbb{N}$: number of latent classes
* $\boldsymbol{z} \in \{ 0, 1 \}^K$: a one-hot vector representing the latent class (latent variable)
* $\boldsymbol{\pi} \in [0, 1]^K$: a parameter for latent classes, ($\sum_{k=1}^K \pi_k=1$)
* $a_{jk}$ : transition probability to latent state k under latent state j
* $\boldsymbol{A}=(a_{jk})_{0\leq j,k\leq K} \in [0, 1]^{K\times K}$: a parameter for latent classes, ($\sum_{k=1}^K a_{jk}=1$)
* $a_{j,k} \in [0,1]$ : transition probability to latent state k under latent state j
* $\boldsymbol{a}_j = [a_{j,1}, a_{j,2}, \dots , a_{j,K}]\in [0,1]^K$, a vector of the transition probability ($\sum_{k=1}^K a_{j,k}=1$)
* $\boldsymbol{A}=(a_{j,k})_{1\leq j,k\leq K} \in [0, 1]^{K\times K}$: a matrix of the transition probability
* $D \in \mathbb{N}$: a dimension of data
* $\boldsymbol{x} \in \mathbb{R}^D$: a data point
* $\boldsymbol{\mu}_k \in \mathbb{R}^D$: a parameter
Expand All @@ -22,7 +23,7 @@ The stochastic data generative model is as follows:
$$
\begin{align}
p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) &= \mathrm{Cat}(\boldsymbol{z}_{1}|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{1,k}},\\
p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{j=1}^K a_{jk}^{z_{n-1,j}z_{n,k}},\\
p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{j=1}^K a_{j,k}^{z_{n-1,j}z_{n,k}},\\
p(\boldsymbol{x}_{n} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{z}_{n}) &= \prod_{k=1}^K \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Lambda}_k^{-1})^{z_{n,k}} \\
&= \prod_{k=1}^K \left( \frac{| \boldsymbol{\Lambda}_{k} |^{1/2}}{(2\pi)^{D/2}} \exp \left\{ -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{k})^\top \boldsymbol{\Lambda}_{k} (\boldsymbol{x}-\boldsymbol{\mu}_{k}) \right\} \right)^{z_{n,k}},
\end{align}
Expand All @@ -44,7 +45,8 @@ $$
p(\boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi},\boldsymbol{A}) &= \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_0,(\kappa_0 \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_0, \nu_0) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_0) \prod_{j=1}^{K}\mathrm{Dir}(\boldsymbol{a}_{j}|\boldsymbol{\zeta}_{0,j}), \\
&= \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_0}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_0}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_0)^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_0) \right\} \\
&\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\}\biggl] \\
&\qquad \times \Biggl[ \prod_{k=1}^KC(\boldsymbol{\eta}_0)\pi_k^{\eta_{0,k}-1}\biggl]\times \biggl[\prod_{j=1}^KC(\boldsymbol{\zeta}_{0,j})\prod_{k=1}^K a_{jk}^{\zeta_{0,j,k}-1}\Biggr],\\
&\qquad \times \Biggl[ \prod_{k=1}^KC(\boldsymbol{\eta}_0)\pi_k^{\eta_{0,k}-1}\biggl]\\
&\qquad \times \biggl[\prod_{j=1}^KC(\boldsymbol{\zeta}_{0,j})\prod_{k=1}^K a_{j,k}^{\zeta_{0,j,k}-1}\Biggr],\\
\end{align}
$$

Expand All @@ -57,68 +59,94 @@ $$
C(\boldsymbol{\zeta}_{0,j}) &= \frac{\Gamma(\sum_{k=1}^K \zeta_{0,j,k})}{\Gamma(\zeta_{0,j,1})\cdots\Gamma(\zeta_{0,j,K})}.
\end{align}
$$
<!--

The apporoximate posterior distribution in the $t$-th iteration of a variational Bayesian method is as follows:

* $\boldsymbol{x}^n = (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots , \boldsymbol{x}_n) \in \mathbb{R}^{D \times n}$: given data
* $\boldsymbol{z}^n = (\boldsymbol{z}_1, \boldsymbol{z}_2, \dots , \boldsymbol{z}_n) \in \{ 0, 1 \}^{K \times n}$: latent classes of given data
* $\boldsymbol{r}_i^{(t)} = (r_{i,1}^{(t)}, r_{i,2}^{(t)}, \dots , r_{i,K}^{(t)}) \in [0, 1]^K$: a parameter for the $i$-th latent class. ($\sum_{k=1}^K r_{i, k}^{(t)} = 1$)
* $\boldsymbol{m}_{n,k}^{(t)} \in \mathbb{R}^{D}$: a hyperparameter
* $\kappa_{n,k}^{(t)} \in \mathbb{R}_{>0}$: a hyperparameter
* $\nu_{n,k}^{(t)} \in \mathbb{R}$: a hyperparameter $(\nu_n > D-1)$
* $\boldsymbol{W}_{n,k}^{(t)} \in \mathbb{R}^{D\times D}$: a hyperparameter (a positive definite matrix)
* $\boldsymbol{\eta}_n^{(t)} \in \mathbb{R}_{> 0}^K$: a hyperparameter

* $\boldsymbol{\zeta}_{n,j}^{(t)} \in \mathbb{R}_{> 0}^K$: a hyperparameter
$$
\begin{align}
q(\boldsymbol{z}^n, \boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi}) &= \left\{ \prod_{i=1}^n \mathrm{Cat} (\boldsymbol{z}_i | \boldsymbol{r}_i^{(t)}) \right\} \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_{n,k}^{(t)},(\kappa_{n,k}^{(t)} \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_n^{(t)}) \\
&= \Biggl[ \prod_{i=1}^n \prod_{k=1}^K (r_{i,k}^{(t)})^{z_{i,k}} \Biggr] \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_{n,k}^{(t)}}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_{n,k}^{(t)}}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_{n,k}^{(t)})^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_{n,k}^{(t)}) \right\} \\
&q(\boldsymbol{z}^n, \boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi},\boldsymbol{A}) \nonumber \\
&= q^{(t)}(\boldsymbol{z}^n) \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_{n,k}^{(t)},(\kappa_{n,k}^{(t)} \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_n^{(t)})\left\{\prod_{j=1}^K\mathrm{Dir}(\boldsymbol{a}_j|\boldsymbol{\zeta}_{n,j}^{(t)})\right\}, \\
&= q^{(t)}(\boldsymbol{z}^n) \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_{n,k}^{(t)}}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_{n,k}^{(t)}}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_{n,k}^{(t)})^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_{n,k}^{(t)}) \right\} \\
&\qquad \times B(\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) | \boldsymbol{\Lambda}_k |^{(\nu_{n,k}^{(t)} - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ ( \boldsymbol{W}_{n,k}^{(t)} )^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \\
&\qquad \times C(\boldsymbol{\eta}_n^{(t)})\prod_{k=1}^K \pi_k^{\eta_{n,k}^{(t)}-1},\\
&\qquad \times C(\boldsymbol{\eta}_n^{(t)})\prod_{k=1}^K \pi_k^{\eta_{n,k}^{(t)}-1}\left[\prod_{j=1}^K C(\boldsymbol{\zeta}_{n,j}^{(t)})\prod_{k=1}^K a_{j,k}^{\zeta_{n,j,k}^{(t)}-1}\right],\\
\end{align}
$$

where the updating rule of the hyperparameters is as follows.

$$
\begin{align}
N_k^{(t)} &= \sum_{i=1}^n r_{i,k}^{(t)} \\
\bar{\boldsymbol{x}}_k^{(t)} &= \frac{1}{N_k^{(t)}} \sum_{i=1}^n r_{i,k}^{(t)} \boldsymbol{x}_i \\
N_k^{(t)} &= \sum_{i=1}^n \gamma^{(t)}_{i,k}, \\
M_{j,k}^{(t)} &= \sum_{i=2}^n \xi^{(t)}_{i,j,k},\\
\bar{\boldsymbol{x}}_k^{(t)} &= \frac{1}{N_k^{(t)}} \sum_{i=1}^n \gamma^{(t)}_{i,k} \boldsymbol{x}_i, \\
S_k^{(t)} &= \frac{1}{N_k^{(t)}}\sum_{i=1}^n \gamma^{(t)}_{i,k} (x_i-\bar{\boldsymbol{x}}_k^{(t)})(x_i-\bar{\boldsymbol{x}}_k^{(t)})^{\top},\\
\boldsymbol{m}_{n,k}^{(t+1)} &= \frac{\kappa_0\boldsymbol{\mu}_0 + N_k^{(t)} \bar{\boldsymbol{x}}_k^{(t)}}{\kappa_0 + N_k^{(t)}}, \\
\kappa_{n,k}^{(t+1)} &= \kappa_0 + N_k^{(t)}, \\
(\boldsymbol{W}_{n,k}^{(t+1)})^{-1} &= \boldsymbol{W}_0^{-1} + \sum_{i=1}^{n} r_{i,k}^{(t)} (\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})(\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})^\top + \frac{\kappa_0 N_k^{(t)}}{\kappa_0 + N_k^{(t)}}(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)^\top, \\
(\boldsymbol{W}_{n,k}^{(t+1)})^{-1} &= \boldsymbol{W}_0^{-1} + N_k^{(t)}S_k^{(t)} + \frac{\kappa_0 N_k^{(t)}}{\kappa_0 + N_k^{(t)}}(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)^\top, \\
\nu_{n,k}^{(t+1)} &= \nu_0 + N_k^{(t)},\\
\eta_{n,k}^{(t+1)} &= \eta_{0,k} + N_k^{(t)} \\
\ln \rho_{i,k}^{(t+1)} &= \psi (\eta_{n,k}^{(t+1)}) - \psi ( {\textstyle \sum_{k=1}^K \eta_{n,k}^{(t+1)}} ) \nonumber \\
&\qquad + \frac{1}{2} \Biggl[ \sum_{d=1}^D \psi \left( \frac{\nu_{n,k}^{(t+1)} + 1 - d}{2} \right) + D \ln 2 + \ln | \boldsymbol{W}_{n,k}^{(t+1)} | \nonumber \\
&\qquad - D \ln (2 \pi ) - \frac{D}{\kappa_{n,k}^{(t+1)}} - \nu_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)})^\top \boldsymbol{W}_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)}) \Biggr] \\
r_{i,k}^{(t+1)} &= \frac{\rho_{i,k}^{(t+1)}}{\sum_{k=1}^K \rho_{i,k}^{(t+1)}}
\eta_{n,k}^{(t+1)} &= \eta_{0,k} + \gamma^{(t)}_{1,k}, \\
\zeta_{n,j,k}^{(t+1)} &= \zeta_{0,j,k}+M_{j,k}^{(t)}.
\end{align}
$$

The approximate posterior distribution of the latent variable $q^{(t+1)}(z^n)$ is calculated by the forward-backward algorithm as follows.

$$
\begin{align}
\ln \rho_{i,k}^{(t+1)} &= \frac{1}{2} \Biggl[\, \sum_{d=1}^D \psi \left( \frac{\nu_{n,k}^{(t+1)} + 1 - d}{2} \right) + D \ln 2 + \ln | \boldsymbol{W}_{n,k}^{(t+1)} | \notag \\
&\qquad - D \ln (2 \pi ) - \frac{D}{\kappa_{n,k}^{(t+1)}} - \nu_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)})^\top \boldsymbol{W}_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)}) \Biggr], \\
\ln \tilde{\pi}_k^{(t+1)} &= \psi (\eta_{n,k}^{(t+1)}) - \psi \left( \textstyle \sum_{k=1}^K \eta_{n,k}^{(t+1)} \right) \\
\ln \tilde{a}_{j,k}^{(t+1)} &= \psi (\zeta_{n,j,k}^{(t+1)}) - \psi \left( \textstyle \sum_{k=1}^K \zeta_{n,j,k}^{(t+1)} \right) \\
\alpha^{(t+1)} (\boldsymbol{z}_i) &\propto
\begin{cases}
\prod_{k=1}^{K} \left( \rho_{i,k}^{(t+1)}\right)^{z_{i,k}} \sum_{\boldsymbol{z}_{i-1}} \left[\prod_{k=1}^{K}\prod_{j=1}^{K}\left(\tilde{a}^{(t+1)}_{j,k}\right)^{z_{i-1,j}z_{i,k}}\alpha^{(t+1)}(\boldsymbol{z}_{i-1})\right] & (i>1)\\
\prod_{k=1}^{K}\left( \rho_{1,k}^{(t+1)} \tilde{\pi}_k^{(t+1)} \right)^{z_{1,k}} & (i=1)
\end{cases} \\
\beta^{(t+1)} (\boldsymbol{z}_i) &\propto
\begin{cases}
\sum_{\boldsymbol{z}_{i+1}} \left[ \prod_{k=1}^{K} \left( \rho_{i+1,k}^{(t+1)}\right)^{z_{i,k}} \prod_{k=1}^{K}\prod_{j=1}^{K}\left(\tilde{a}^{(t+1)}_{j,k}\right)^{z_{i,j}z_{i+1,k}}\beta^{(t+1)}(\boldsymbol{z}_{i+1})\right] & (i<n)\\
1 & (i=n)
\end{cases} \\
q^{(t+1)}(\boldsymbol{z}_i) &\propto \alpha^{(t+1)}(\boldsymbol{z}_i)\beta^{(t+1)}(\boldsymbol{z}_i) \\
\gamma^{(t+1)}_{i,k} &= \sum_{\boldsymbol{z}_i} q^{(t+1)}(\boldsymbol{z}_i) z_{i,k}\\
q^{(t+1)}(\boldsymbol{z}_{i-1}, \boldsymbol{z}_{i}) &\propto \alpha^{(t+1)}(\boldsymbol{z}_{i-1}) \prod_{k=1}^{K} \left( \rho_{i,k}^{(t+1)}\right)^{z_{i,k}} \prod_{k=1}^{K}\prod_{j=1}^{K}\left(\tilde{a}^{(t+1)}_{j,k}\right)^{z_{i-1,j}z_{i,k}} \beta^{(t+1)}(\boldsymbol{z}_i) \\
\xi^{(t+1)}_{i,j,k} &= \sum_{\boldsymbol{z}_{i-1}} \sum_{\boldsymbol{z}_i} q^{(t+1)}(\boldsymbol{z}_{i-1}, \boldsymbol{z}_{i}) z_{i-1,j} z_{i,k}
\end{align}
$$

The approximate predictive distribution is as follows:

* $\boldsymbol{x}_{n+1} \in \mathbb{R}^D$: a new data point
* $(a_{\mathrm{p},j,k})_{1\leq j,k\leq K} \in [0, 1]^{K\times K}$: the parameters of the predictive transition probability of latent classes, ($\sum_{k=1}^K a_{\mathrm{p},j,k}=1$)
* $\boldsymbol{\mu}_{\mathrm{p},k} \in \mathbb{R}^D$: the parameter of the predictive distribution
* $\boldsymbol{\Lambda}_{\mathrm{p},k} \in \mathbb{R}^{D \times D}$: the parameter of the predictive distribution (a positive definite matrix)
* $\nu_{\mathrm{p},k} \in \mathbb{R}_{>0}$: the parameter of the predictive distribution

$$
\begin{align}
&p(x_{n+1}|x^n) \\
&= \frac{1}{\sum_{k=1}^K \eta_{n,k}^{(t)}} \sum_{k=1}^K \eta_{n,k}^{(t)} \mathrm{St}(x_{n+1}|\boldsymbol{\mu}_{\mathrm{p},k},\boldsymbol{\Lambda}_{\mathrm{p},k}, \nu_{\mathrm{p},k}) \\
&= \frac{1}{\sum_{k=1}^K \eta_{n,k}^{(t)}} \sum_{k=1}^K \eta_{n,k}^{(t)} \Biggl[ \frac{\Gamma (\nu_{\mathrm{p},k} / 2 + D / 2)}{\Gamma (\nu_{\mathrm{p},k} / 2)} \frac{|\boldsymbol{\Lambda}_{\mathrm{p},k}|^{1/2}}{(\nu_{\mathrm{p},k} \pi)^{D/2}} \nonumber \\
&\approx \sum_{k=1}^K \left( \sum_{j=1}^K \gamma_{n,j}^{(t)} a_{\mathrm{p},j,k} \right) \mathrm{St}(x_{n+1}|\boldsymbol{\mu}_{\mathrm{p},k},\boldsymbol{\Lambda}_{\mathrm{p},k}, \nu_{\mathrm{p},k}) \\
&= \sum_{k=1}^K \left( \sum_{j=1}^K \gamma_{n,j}^{(t)} a_{\mathrm{p},j,k} \right)\Biggl[ \frac{\Gamma (\nu_{\mathrm{p},k} / 2 + D / 2)}{\Gamma (\nu_{\mathrm{p},k} / 2)} \frac{|\boldsymbol{\Lambda}_{\mathrm{p},k}|^{1/2}}{(\nu_{\mathrm{p},k} \pi)^{D/2}} \nonumber \\
&\qquad \qquad \qquad \qquad \qquad \times \left( 1 + \frac{1}{\nu_{\mathrm{p},k}} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k})^\top \boldsymbol{\Lambda}_{\mathrm{p},k} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k}) \right)^{-\nu_{\mathrm{p},k}/2 - D/2} \Biggr],
\end{align}
$$

where the parameters are obtained from the hyperparameters of the posterior distribution as follows:
where the parameters are obtained from the hyperparameters of the predictive distribution as follows:

$$
\begin{align}
\boldsymbol{\mu}_{\mathrm{p},k} &= \boldsymbol{m}_{n,k}^{(t)} \\
a_{\mathrm{p},j,k} &= \frac{\zeta_{n,j,k}^{(t)}}{\sum_{k=1}^K \zeta_{n,j,k}^{(t)}}, \\
\boldsymbol{\mu}_{\mathrm{p},k} &= \boldsymbol{m}_{n,k}^{(t)}, \\
\boldsymbol{\Lambda}_{\mathrm{p},k} &= \frac{\kappa_{n,k}^{(t)} (\nu_{n,k}^{(t)} - D + 1)}{\kappa_{n,k}^{(t)} + 1} \boldsymbol{W}_{n,k}^{(t)}, \\
\nu_{\mathrm{p},k} &= \nu_{n,k}^{(t)} - D + 1.
\end{align}
$$
-->