Skip to content

Develop hiddenmarkovautoregressive resume #23

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions bayesml/hiddenmarkovautoregressive/hiddenmarkovautoregressive.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
<!-- Document Author
Koki Kazama <kokikazama@aoni.waseda.jp>
-->
The Hidden Markov model with the Gauss-Wishart prior distribution and the Dirichlet prior distribution.

The stochastic data generative model is as follows:

* $K \in \mathbb{N}$: number of latent classes
* $n \in \mathbb{N}$: time index
* $\boldsymbol{z}_{n} \in \{ 0, 1 \}^K$: a one-hot vector representing the latent class (latent variable)
* $\boldsymbol{\pi}=[\pi_{1},\dots,\pi_{K}]^{\top} \in [0, 1]^K$: a parameter for latent classes, ($\sum_{k=1}^K \pi_k=1$)
* $a_{jk}$ : transition probability to latent state k under latent state j
* $\boldsymbol{A}=(a_{jk})_{0\leq j,k\leq K} \in [0, 1]^{K\times K}$: a parameter for latent classes, ($\sum_{k=1}^K a_{jk}=1$)
* $d \in \mathbb{N}$: the degree of the model
* $\boldsymbol{x}'_n := [1, x_{n-d}, x_{n-d+1}, \dots , x_{n-1}]^\top \in \mathbb{R}^{d+1}$. Here we assume $x_n$ for $n < 1$ is given as a initial value.
* $\boldsymbol{\theta}_{k} \in \mathbb{R}^{d+1}$: a regression coefficient parameter
* $\boldsymbol{\theta}:=\{\boldsymbol{\theta}_{k}\}_{k=1}^{K}$
* $x_n \in \mathbb{R}$: a data point at $n$
* $\tau_{k} \in \mathbb{R}_{>0}$: a precision parameter of noise
* $\boldsymbol{\tau}:=\{\tau_{k}\}_{k=1}^{K}$.


$$
\begin{align}
p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) &= \mathrm{Cat}(\boldsymbol{z}_{1}|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{1,k}},\\
p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{j=1}^K a_{jk}^{z_{n-1,j}z_{n,k}},\\
p(x_n | \boldsymbol{x}'_{n-1}, \boldsymbol{\theta}, \boldsymbol{\tau}) &= \prod_{k=1}^{K}\mathcal{N}(x_n|\boldsymbol{\theta}_{k}^\top \boldsymbol{x}'_{n-1}, \tau_{k}^{-1})^{z_{k}} \\
&= \prod_{k=1}^{K}\left(\sqrt{\frac{\tau_{k}}{2 \pi}} \exp \left\{ -\frac{\tau_{k}}{2} (x_n - \boldsymbol{\theta}_{k}^\top \boldsymbol{x}'_{n-1})^2 \right\}\right)^{z_{k}}
\end{align}
$$

The prior distribution is as follows:

* $\boldsymbol{\mu}_0 \in \mathbb{R}^{d+1}$: a hyperparameter for $\boldsymbol{\theta}$
* $\boldsymbol{\Lambda}_0 \in \mathbb{R}^{(d+1) \times (d+1)}$: a hyperparameter for $\boldsymbol{\theta}$ (a positive definite matrix)
* $| \boldsymbol{\Lambda}_0 | \in \mathbb{R}$: the determinant of $\boldsymbol{\Lambda}_0$
* $\alpha_0 \in \mathbb{R}_{>0}$: a hyperparameter for $\tau$
* $\beta_0 \in \mathbb{R}_{>0}$: a hyperparameter for $\tau$
* $\Gamma(\cdot): \mathbb{R}_{>0} \to \mathbb{R}$: the Gamma function
* $\boldsymbol{\eta}_0=(\eta_{0,1},\dots,\eta_{0,K}) \in \mathbb{R}_{> 0}^K$: a hyperparameter
* $\boldsymbol{\zeta}_{0,j}=(\zeta_{0,j,1},\dots,\zeta_{0,j,K}) \in \mathbb{R}_{> 0}^K$: a hyperparameter for $j=1,\dots,K$
* $\boldsymbol{a}_{j}=\{a_{j,k}\}_{k=1}^{K}$ for $j=1,\dots,K$
* $\mathrm{Tr} \{ \cdot \}$: a trace of a matrix

$$
\begin{align}
&p(\boldsymbol{\theta}, \boldsymbol{\tau},\boldsymbol{\pi},\boldsymbol{A})
\\
&=\left[\prod_{k=1}^{K} \mathcal{N}(\boldsymbol{\theta}_{k}|\boldsymbol{\mu}_0, (\tau _{k}\boldsymbol{\Lambda}_0)^{-1}) \mathrm{Gam}(\tau_{k}|\alpha_0,\beta_0)\right]
\\
&\qquad\times\left[\mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_0) \prod_{k=1}^{K}\mathrm{Dir}(\boldsymbol{a}_{j}|\boldsymbol{\zeta}_{0,j})\right]\\
&=\left[\prod_{k=1}^{K}\frac{|\tau_{k}\boldsymbol{\Lambda}_0|^{1/2}}{(2 \pi)^{(d+1)/2}}
\exp \left\{ -\frac{\tau_{k}}{2} (\boldsymbol{\theta}_{k} - \boldsymbol{\mu}_0)^\top
\boldsymbol{\Lambda}_0 (\boldsymbol{\theta}_{k} - \boldsymbol{\mu}_0) \right\}
\frac{\beta_0^{\alpha_0}}{\Gamma (\alpha_0)} \tau_{k}^{\alpha_0 - 1} \exp \{ -\beta_0 \tau_{k} \}\right]
\\
&\qquad\times\left[ \prod_{k=1}^KC(\boldsymbol{\eta}_0)\pi_k^{\eta_{0,k}-1}\biggl]\times \biggl[\prod_{j=1}^KC(\boldsymbol{\zeta}_{0,j})\prod_{k=1}^K a_{jk}^{\zeta_{0,j,k}-1}\right],
\end{align}
$$
where $C(\boldsymbol{\eta}_0)$ is defined as follows:
$$
\begin{align}
C(\boldsymbol{\eta}_0) &= \frac{\Gamma(\sum_{k=1}^K \eta_{0,k})}{\Gamma(\eta_{0,1})\cdots\Gamma(\eta_{0,K})},\\
C(\boldsymbol{\zeta}_{0,j}) &= \frac{\Gamma(\sum_{k=1}^K \zeta_{0,j,k})}{\Gamma(\zeta_{0,j,1})\cdots\Gamma(\zeta_{0,j,K})}.
\end{align}
$$