Skip to content

Develop hiddenmarkovnormal resume #17

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions bayesml/hiddenmarkovnormal/hiddenmarkovnormal.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
<!-- Document Author
Ryohei Oka <o.ryohei07@gmail.com>
-->

The Hidden Markov model with the Gauss-Wishart prior distribution and the Dirichlet prior distribution.

The stochastic data generative model is as follows:

* $K \in \mathbb{N}$: number of latent classes
* $\boldsymbol{z} \in \{ 0, 1 \}^K$: a one-hot vector representing the latent class (latent variable)
* $\boldsymbol{\pi} \in [0, 1]^K$: a parameter for latent classes, ($\sum_{k=1}^K \pi_k=1$)
* $a_{jk}$ : transition probability to latent state k under latent state j
* $\boldsymbol{A}=(a_{jk})_{0\leq j,k\leq K} \in [0, 1]^{K\times K}$: a parameter for latent classes, ($\sum_{k=1}^K a_{jk}=1$)
* $D \in \mathbb{N}$: a dimension of data
* $\boldsymbol{x} \in \mathbb{R}^D$: a data point
* $\boldsymbol{\mu}_k \in \mathbb{R}^D$: a parameter
* $\boldsymbol{\mu} = \{ \boldsymbol{\mu}_k \}_{k=1}^K$
* $\boldsymbol{\Lambda}_k \in \mathbb{R}^{D\times D}$ : a parameter (a positive definite matrix)
* $\boldsymbol{\Lambda} = \{ \boldsymbol{\Lambda}_k \}_{k=1}^K$
* $| \boldsymbol{\Lambda}_k | \in \mathbb{R}$: the determinant of $\boldsymbol{\Lambda}_k$

$$
\begin{align}
p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) &= \mathrm{Cat}(\boldsymbol{z}_{1}|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{1,k}},\\
p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{j=1}^K a_{jk}^{z_{n-1,j}z_{n,k}},\\
p(\boldsymbol{x}_{n} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{z}_{n}) &= \prod_{k=1}^K \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Lambda}_k^{-1})^{z_{n,k}} \\
&= \prod_{k=1}^K \left( \frac{| \boldsymbol{\Lambda}_{k} |^{1/2}}{(2\pi)^{D/2}} \exp \left\{ -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{k})^\top \boldsymbol{\Lambda}_{k} (\boldsymbol{x}-\boldsymbol{\mu}_{k}) \right\} \right)^{z_{n,k}},
\end{align}
$$

The prior distribution is as follows:

* $\boldsymbol{m}_0 \in \mathbb{R}^{D}$: a hyperparameter
* $\kappa_0 \in \mathbb{R}_{>0}$: a hyperparameter
* $\nu_0 \in \mathbb{R}$: a hyperparameter ($\nu_0 > D-1$)
* $\boldsymbol{W}_0 \in \mathbb{R}^{D\times D}$: a hyperparameter (a positive definite matrix)
* $\boldsymbol{\eta}_0 \in \mathbb{R}_{> 0}^K$: a hyperparameter
* $\boldsymbol{\zeta}_{0,j} \in \mathbb{R}_{> 0}^K$: a hyperparameter
* $\mathrm{Tr} \{ \cdot \}$: a trace of a matrix
* $\Gamma (\cdot)$: the gamma function

$$
\begin{align}
p(\boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi},\boldsymbol{A}) &= \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_0,(\kappa_0 \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_0, \nu_0) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_0) \prod_{j=1}^{K}\mathrm{Dir}(\boldsymbol{a}_{j}|\boldsymbol{\zeta}_{0,j}), \\
&= \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_0}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_0}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_0)^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_0) \right\} \\
&\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\}\biggl] \\
&\qquad \times \Biggl[ \prod_{k=1}^KC(\boldsymbol{\eta}_0)\pi_k^{\eta_{0,k}-1}\biggl]\times \biggl[\prod_{j=1}^KC(\boldsymbol{\zeta}_{0,j})\prod_{k=1}^K a_{jk}^{\zeta_{0,j,k}-1}\Biggr],\\
\end{align}
$$

where $B(\boldsymbol{W}_0, \nu_0)$ and $C(\boldsymbol{\eta}_0)$ are defined as follows:

$$
\begin{align}
B(\boldsymbol{W}_0, \nu_0) &= | \boldsymbol{W}_0 |^{-\nu_0 / 2} \left( 2^{\nu_0 D / 2} \pi^{D(D-1)/4} \prod_{i=1}^D \Gamma \left( \frac{\nu_0 + 1 - i}{2} \right) \right)^{-1}, \\
C(\boldsymbol{\eta}_0) &= \frac{\Gamma(\sum_{k=1}^K \eta_{0,k})}{\Gamma(\eta_{0,1})\cdots\Gamma(\eta_{0,K})},\\
C(\boldsymbol{\zeta}_{0,j}) &= \frac{\Gamma(\sum_{k=1}^K \zeta_{0,j,k})}{\Gamma(\zeta_{0,j,1})\cdots\Gamma(\zeta_{0,j,K})}.
\end{align}
$$
<!--
The apporoximate posterior distribution in the $t$-th iteration of a variational Bayesian method is as follows:

* $\boldsymbol{x}^n = (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots , \boldsymbol{x}_n) \in \mathbb{R}^{D \times n}$: given data
* $\boldsymbol{z}^n = (\boldsymbol{z}_1, \boldsymbol{z}_2, \dots , \boldsymbol{z}_n) \in \{ 0, 1 \}^{K \times n}$: latent classes of given data
* $\boldsymbol{r}_i^{(t)} = (r_{i,1}^{(t)}, r_{i,2}^{(t)}, \dots , r_{i,K}^{(t)}) \in [0, 1]^K$: a parameter for the $i$-th latent class. ($\sum_{k=1}^K r_{i, k}^{(t)} = 1$)
* $\boldsymbol{m}_{n,k}^{(t)} \in \mathbb{R}^{D}$: a hyperparameter
* $\kappa_{n,k}^{(t)} \in \mathbb{R}_{>0}$: a hyperparameter
* $\nu_{n,k}^{(t)} \in \mathbb{R}$: a hyperparameter $(\nu_n > D-1)$
* $\boldsymbol{W}_{n,k}^{(t)} \in \mathbb{R}^{D\times D}$: a hyperparameter (a positive definite matrix)
* $\boldsymbol{\eta}_n^{(t)} \in \mathbb{R}_{> 0}^K$: a hyperparameter

$$
\begin{align}
q(\boldsymbol{z}^n, \boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi}) &= \left\{ \prod_{i=1}^n \mathrm{Cat} (\boldsymbol{z}_i | \boldsymbol{r}_i^{(t)}) \right\} \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_{n,k}^{(t)},(\kappa_{n,k}^{(t)} \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_n^{(t)}) \\
&= \Biggl[ \prod_{i=1}^n \prod_{k=1}^K (r_{i,k}^{(t)})^{z_{i,k}} \Biggr] \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_{n,k}^{(t)}}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_{n,k}^{(t)}}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_{n,k}^{(t)})^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_{n,k}^{(t)}) \right\} \\
&\qquad \times B(\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) | \boldsymbol{\Lambda}_k |^{(\nu_{n,k}^{(t)} - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ ( \boldsymbol{W}_{n,k}^{(t)} )^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \\
&\qquad \times C(\boldsymbol{\eta}_n^{(t)})\prod_{k=1}^K \pi_k^{\eta_{n,k}^{(t)}-1},\\
\end{align}
$$

where the updating rule of the hyperparameters is as follows.

$$
\begin{align}
N_k^{(t)} &= \sum_{i=1}^n r_{i,k}^{(t)} \\
\bar{\boldsymbol{x}}_k^{(t)} &= \frac{1}{N_k^{(t)}} \sum_{i=1}^n r_{i,k}^{(t)} \boldsymbol{x}_i \\
\boldsymbol{m}_{n,k}^{(t+1)} &= \frac{\kappa_0\boldsymbol{\mu}_0 + N_k^{(t)} \bar{\boldsymbol{x}}_k^{(t)}}{\kappa_0 + N_k^{(t)}}, \\
\kappa_{n,k}^{(t+1)} &= \kappa_0 + N_k^{(t)}, \\
(\boldsymbol{W}_{n,k}^{(t+1)})^{-1} &= \boldsymbol{W}_0^{-1} + \sum_{i=1}^{n} r_{i,k}^{(t)} (\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})(\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})^\top + \frac{\kappa_0 N_k^{(t)}}{\kappa_0 + N_k^{(t)}}(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)^\top, \\
\nu_{n,k}^{(t+1)} &= \nu_0 + N_k^{(t)},\\
\eta_{n,k}^{(t+1)} &= \eta_{0,k} + N_k^{(t)} \\
\ln \rho_{i,k}^{(t+1)} &= \psi (\eta_{n,k}^{(t+1)}) - \psi ( {\textstyle \sum_{k=1}^K \eta_{n,k}^{(t+1)}} ) \nonumber \\
&\qquad + \frac{1}{2} \Biggl[ \sum_{d=1}^D \psi \left( \frac{\nu_{n,k}^{(t+1)} + 1 - d}{2} \right) + D \ln 2 + \ln | \boldsymbol{W}_{n,k}^{(t+1)} | \nonumber \\
&\qquad - D \ln (2 \pi ) - \frac{D}{\kappa_{n,k}^{(t+1)}} - \nu_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)})^\top \boldsymbol{W}_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)}) \Biggr] \\
r_{i,k}^{(t+1)} &= \frac{\rho_{i,k}^{(t+1)}}{\sum_{k=1}^K \rho_{i,k}^{(t+1)}}
\end{align}
$$

The approximate predictive distribution is as follows:

* $\boldsymbol{x}_{n+1} \in \mathbb{R}^D$: a new data point
* $\boldsymbol{\mu}_{\mathrm{p},k} \in \mathbb{R}^D$: the parameter of the predictive distribution
* $\boldsymbol{\Lambda}_{\mathrm{p},k} \in \mathbb{R}^{D \times D}$: the parameter of the predictive distribution (a positive definite matrix)
* $\nu_{\mathrm{p},k} \in \mathbb{R}_{>0}$: the parameter of the predictive distribution

$$
\begin{align}
&p(x_{n+1}|x^n) \\
&= \frac{1}{\sum_{k=1}^K \eta_{n,k}^{(t)}} \sum_{k=1}^K \eta_{n,k}^{(t)} \mathrm{St}(x_{n+1}|\boldsymbol{\mu}_{\mathrm{p},k},\boldsymbol{\Lambda}_{\mathrm{p},k}, \nu_{\mathrm{p},k}) \\
&= \frac{1}{\sum_{k=1}^K \eta_{n,k}^{(t)}} \sum_{k=1}^K \eta_{n,k}^{(t)} \Biggl[ \frac{\Gamma (\nu_{\mathrm{p},k} / 2 + D / 2)}{\Gamma (\nu_{\mathrm{p},k} / 2)} \frac{|\boldsymbol{\Lambda}_{\mathrm{p},k}|^{1/2}}{(\nu_{\mathrm{p},k} \pi)^{D/2}} \nonumber \\
&\qquad \qquad \qquad \qquad \qquad \times \left( 1 + \frac{1}{\nu_{\mathrm{p},k}} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k})^\top \boldsymbol{\Lambda}_{\mathrm{p},k} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k}) \right)^{-\nu_{\mathrm{p},k}/2 - D/2} \Biggr],
\end{align}
$$

where the parameters are obtained from the hyperparameters of the posterior distribution as follows:

$$
\begin{align}
\boldsymbol{\mu}_{\mathrm{p},k} &= \boldsymbol{m}_{n,k}^{(t)} \\
\boldsymbol{\Lambda}_{\mathrm{p},k} &= \frac{\kappa_{n,k}^{(t)} (\nu_{n,k}^{(t)} - D + 1)}{\kappa_{n,k}^{(t)} + 1} \boldsymbol{W}_{n,k}^{(t)}, \\
\nu_{\mathrm{p},k} &= \nu_{n,k}^{(t)} - D + 1.
\end{align}
$$
-->