Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
add unit test for sinkhorn_plan
  • Loading branch information
daniel-habermann committed Jul 5, 2025
commit 83b01c9d82bc09aba7201e204b4db0062aa87c34
48 changes: 48 additions & 0 deletions tests/test_utils/test_optimal_transport.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,3 +79,51 @@ def test_assignment_aligns_with_pot():
_, _, assignments = optimal_transport(x, y, regularization=1e-3, seed=0, max_steps=10_000, return_assignments=True)

assert_allclose(pot_assignments, assignments)


def test_sinkhorn_plan_correct_marginals():
from bayesflow.utils.optimal_transport.sinkhorn import sinkhorn_plan

x1 = keras.random.normal((10, 2), seed=0)
x2 = keras.random.normal((20, 2), seed=1)

assert keras.ops.all(keras.ops.isclose(keras.ops.sum(sinkhorn_plan(x1, x2), axis=0), 0.05, atol=1e-6))
assert keras.ops.all(keras.ops.isclose(keras.ops.sum(sinkhorn_plan(x1, x2), axis=1), 0.1, atol=1e-6))


def test_sinkhorn_plan_aligns_with_pot():
try:
from ot.bregman import sinkhorn
except (ImportError, ModuleNotFoundError):
pytest.skip("Need to install POT to run this test.")

from bayesflow.utils.optimal_transport.sinkhorn import sinkhorn_plan
from bayesflow.utils.optimal_transport.euclidean import euclidean

x1 = keras.random.normal((10, 3), seed=0)
x2 = keras.random.normal((20, 3), seed=1)

a = keras.ops.ones(10) / 10
b = keras.ops.ones(20) / 20
M = euclidean(x1, x2)

pot_result = sinkhorn(a, b, M, 0.1)
our_result = sinkhorn_plan(x1, x2, regularization=0.1, atol=1e-8, rtol=1e-8)
assert_allclose(pot_result, our_result)


def test_sinkhorn_plan_matches_analytical_result():
from bayesflow.utils.optimal_transport.sinkhorn import sinkhorn_plan

x1 = keras.ops.ones(16)
x2 = keras.ops.ones(64)

marginal_x1 = keras.ops.ones(16) / 16
marginal_x2 = keras.ops.ones(64) / 64

result = sinkhorn_plan(x1, x2, regularization=0.1)

# If x1 and x2 are identical, the optimal plan is simply the outer product of the marginals
expected = keras.ops.outer(marginal_x1, marginal_x2)

assert_allclose(result, expected)