Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support tensorboard to trace the training of Synthesizer #98

Merged
merged 3 commits into from
Sep 25, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 29 additions & 9 deletions synthesizer/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,12 @@
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from synthesizer import audio
from synthesizer.models.tacotron import Tacotron
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from synthesizer.utils import ValueWindow, data_parallel_workaround
from synthesizer.utils.plot import plot_spectrogram
from synthesizer.utils.plot import plot_spectrogram, plot_spectrogram_and_trace
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from vocoder.display import *
Expand All @@ -23,7 +24,7 @@ def time_string():
return datetime.now().strftime("%Y-%m-%d %H:%M")

def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
backup_every: int, force_restart:bool, hparams):
backup_every: int, log_every:int, force_restart:bool, hparams):

syn_dir = Path(syn_dir)
models_dir = Path(models_dir)
Expand Down Expand Up @@ -123,6 +124,9 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
shuffle=True,
pin_memory=True)

# tracing training step
sw = SummaryWriter(log_dir=model_dir.joinpath("logs"))

for i, session in enumerate(hparams.tts_schedule):
current_step = model.get_step()

Expand Down Expand Up @@ -208,9 +212,13 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
step = model.get_step()
k = step // 1000


msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | {1./time_window.average:#.2} steps/s | Step: {k}k | "
stream(msg)

if log_every != 0 and step % log_every == 0 :
sw.add_scalar("training/loss", loss_window.average, step)

# Backup or save model as appropriate
if backup_every != 0 and step % backup_every == 0 :
backup_fpath = Path("{}/{}_{}k.pt".format(str(weights_fpath.parent), run_id, k))
Expand All @@ -220,6 +228,7 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
# Must save latest optimizer state to ensure that resuming training
# doesn't produce artifacts
model.save(weights_fpath, optimizer)


# Evaluate model to generate samples
epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch # If epoch is done
Expand All @@ -233,7 +242,8 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
attention_len = mel_length // model.r

# eval_loss = F.mse_loss(mel_prediction, target_spectrogram)
# sw.add_scalar("validing/loss", eval_loss.item(), step)
eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
mel_prediction=mel_prediction,
target_spectrogram=target_spectrogram,
Expand All @@ -244,7 +254,8 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
wav_dir=wav_dir,
sample_num=sample_idx + 1,
loss=loss,
hparams=hparams)
hparams=hparams,
sw=sw)

# Break out of loop to update training schedule
if step >= max_step:
Expand All @@ -254,10 +265,11 @@ def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
print("")

def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams):
plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams, sw):
# Save some results for evaluation
attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num)))
save_attention(attention, attention_path)
# save_attention(attention, attention_path)
save_and_trace_attention(attention, attention_path, sw, step)

# save predicted mel spectrogram to disk (debug)
mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num))
Expand All @@ -271,7 +283,15 @@ def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
# save real and predicted mel-spectrogram plot to disk (control purposes)
spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num))
title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss)
plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels)
# plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
# target_spectrogram=target_spectrogram,
# max_len=target_spectrogram.size // hparams.num_mels)
plot_spectrogram_and_trace(
mel_prediction,
str(spec_fpath),
title=title_str,
target_spectrogram=target_spectrogram,
max_len=target_spectrogram.size // hparams.num_mels,
sw=sw,
step=step)
print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))
39 changes: 39 additions & 0 deletions synthesizer/utils/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,3 +74,42 @@ def plot_spectrogram(pred_spectrogram, path, title=None, split_title=False, targ
plt.tight_layout()
plt.savefig(path, format="png")
plt.close()


def plot_spectrogram_and_trace(pred_spectrogram, path, title=None, split_title=False, target_spectrogram=None, max_len=None, auto_aspect=False, sw=None, step=0):
if max_len is not None:
target_spectrogram = target_spectrogram[:max_len]
pred_spectrogram = pred_spectrogram[:max_len]

if split_title:
title = split_title_line(title)

fig = plt.figure(figsize=(10, 8))
# Set common labels
fig.text(0.5, 0.18, title, horizontalalignment="center", fontsize=16)

#target spectrogram subplot
if target_spectrogram is not None:
ax1 = fig.add_subplot(311)
ax2 = fig.add_subplot(312)

if auto_aspect:
im = ax1.imshow(np.rot90(target_spectrogram), aspect="auto", interpolation="none")
else:
im = ax1.imshow(np.rot90(target_spectrogram), interpolation="none")
ax1.set_title("Target Mel-Spectrogram")
fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax1)
ax2.set_title("Predicted Mel-Spectrogram")
else:
ax2 = fig.add_subplot(211)

if auto_aspect:
im = ax2.imshow(np.rot90(pred_spectrogram), aspect="auto", interpolation="none")
else:
im = ax2.imshow(np.rot90(pred_spectrogram), interpolation="none")
fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax2)

plt.tight_layout()
plt.savefig(path, format="png")
sw.add_figure("spectrogram", fig, step)
plt.close()
2 changes: 2 additions & 0 deletions synthesizer_train.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@
parser.add_argument("-b", "--backup_every", type=int, default=25000, help= \
"Number of steps between backups of the model. Set to 0 to never make backups of the "
"model.")
parser.add_argument("-l", "--log_every", type=int, default=200, help= \
"Number of steps between summary the training info in tensorboard")
parser.add_argument("-f", "--force_restart", action="store_true", help= \
"Do not load any saved model and restart from scratch.")
parser.add_argument("--hparams", default="",
Expand Down
8 changes: 8 additions & 0 deletions vocoder/display.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,14 @@ def save_attention(attn, path) :
plt.close(fig)


def save_and_trace_attention(attn, path, sw, step):
fig = plt.figure(figsize=(12, 6))
plt.imshow(attn.T, interpolation='nearest', aspect='auto')
fig.savefig(f'{path}.png', bbox_inches='tight')
sw.add_figure('attention', fig, step)
plt.close(fig)


def save_spectrogram(M, path, length=None) :
M = np.flip(M, axis=0)
if length : M = M[:, :length]
Expand Down