- Anaconda
Download the audio from here.
Extract the dataset and move the DangerDetection inside the AudioViT folder.
conda env create -f audioViT_env.yml
conda activate audioViT_env
python noise_cancel.py
python train_audio.py
python test_audio.py
Prepare your own dataset. Move it under AudioViT folder. If you need to crop all your audio in the same length follow the instructions mentioned in this repository.
Create a conda environment:
conda env create -f audioViT_env.yml
Activate the environment:
conda activate audioViT_env
To run with the default value
python noise_cancel.py
To change the noise reduction models:
python noise_cancel.py --noise_reducer=mfcc_up
or
python noise_cancel.py -nr=mfcc_up
Options to customize noise reduction
- --src_root: Path till the root of the dataset with noise.
If the folder structure of the dataset is like this:
|---DangerDetection
| |---test
| | |---Child
| | |---Normal
| | |---Women
| |---train
| | |---Child
| | |---Normal
| | |---Women
Example:--src_root=./DangerDetection
- --dst_root: Path till the root of the dataset where it will be saved.
It will create folder structure like this:
|---CleanData
| |---test
| | |---Child
| | |---Normal
| | |---Women
| |---train
| | |---Child
| | |---Normal
| | |---Women
Example:--dst_root=CleanData
- --noise_reducer, -nr: Mention the name of noise reduction needed to be used.
Options: butter, noise_reduce, deNoise, power, centroid_s, centroid_mb, mfcc_up, mfcc_down, median
Example:--noise_reducer=median
or-nr=median
- --sr: Mention the sampling rate you want to resize the audio.
Example:--sr=40000
To train with the default parameters
python train_audio.py
To change the noise reduction models:
python train_audio.py --model_type=audiovit
Options to customize audio training
- --model_type: Mention the model name you wanna use for training.
Options: conv1d, mobilenetv2, inceptionv3, xception, dencenet, resnet50, resnet101, lstm, audiovit, conv2d, vgg19
Example:--model_type=audiovit
- --training_root: Mention the root of the training folder.
Example:--training_root=./CleanData/train
- --batch_size: Mention the batch size for trining.
Example:--batch_size=4
- --delta_time: Mention the length in seconds of each audio for training.
Example:--delta_time=1.0
- --sr: Mention the sampling rate you have resampled your in noise reduction.
Example:--sr=40000
- --noise_reduce: Mention the noise reducer name you have resampled your in noise reduction.
Options: butter, noise_reduce, deNoise, power, centroid_s, centroid_mb, mfcc_up, mfcc_down, median
Example:--noise_reduce=median
- --old: Mention the folder name where you want to save your models.
Example:--old=./testoutput
To test with the default parameters
python test_audio.py
To change the noise reduction models:
python test_audio.py --model_type=audiovit
Options to customize audio testing
- --model_type: Mention the model name you wanna test your data with.
Options: conv1d, mobilenetv2, inceptionv3, xception, dencenet, resnet50, resnet101, lstm, audiovit, conv2d, vgg19
Example:--model_type=audiovit
- --test_dir: Mention the root of the testing folder.
Example:--test_dir=./CleanData/test
- --noise_reduce: Mention the noise reducer name you have resampled your in noise reduction.
Options: butter, noise_reduce, deNoise, power, centroid_s, centroid_mb, mfcc_up, mfcc_down, median
Example:--noise_reduce=median
- --old: Mention the folder name where you want to save your models.
Example:--old=./testoutput