A complex demo solution with advanced web scraping, SEO scoring and ML for CTR prediction, enabling data-driven optimization of digital marketing strategies; published as part of my freelance project with permission. All data was replaced.
- SEO Analysis: Web scraping using Requests and BeautifulSoup to extract SEO factors such as keywords, metadata, and backlinks.
- SEO Scoring & Reporting: Advanced scoring mechanisms to evaluate page SEO performance based on best practices including page speed, keyword density, and metadata quality.
- CTR Prediction: Machine learning module using XGBoost to predict advertisement click-through rates with evaluation metrics like accuracy, precision, recall, and ROC AUC.
- Web Interface: A Flask-based web application integrating SEO analysis and CTR prediction, with an intuitive dashboard for marketers.
- Synthetic Data Generation: A script to generate synthetic data for demonstration and testing purposes.
- Testing: Comprehensive unit tests for both the web scraping and CTR model modules.
SEO-CTR-optimizer/
├── README.md
├── .gitignore
├── requirements.txt
├── src/
│ ├── config.py
│ ├── utils.py
│ ├── scraper.py
│ ├── seo_analyzer.py
│ ├── ctr_model.py
│ ├── generate_data.py
│ └── main.py
├── templates/
│ ├── base.html
│ ├── index.html
│ ├── results.html
│ ├── train_ctr.html
│ ├── ctr_results.html
│ ├── predict_ctr.html
│ └── ctr_predictions.html
├── static/
│ └── style.css
└── tests/
├── test_scraper.py
└── test_ctr_model.py
- Clone & navigate:
git clone git@github.com:avrtt/SEO-CTR-optimizer.git && cd SEO-CTR-optimizer
- Install the dependencies:
pip install -r requirements.txt
- Generate synthetic data (optional):
python src/generate_data.py
- Run the Flask app:
python src/main.py
- Open your browser and navigate to http://127.0.0.1:5000.
Why would you? Anyway, feel free to open issues.
MIT