Skip to content

Codes for "Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks"

License

Notifications You must be signed in to change notification settings

avmoldovan/Heterophily_and_oversmoothing-forked

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Codes for the paper "Transfer Entropy in Graph Convolutional Neural Networks"

To run the code:

Software Versions:

Python: 3.7.8

numpy: 1.18.5

scipy: 1.5.3

pytorch: 1.6.0

networkx: 2.5

scikit-learn: 0.23.2

dgl: it is only used to run baseline GeomGCN. If you need to run this baseline, you need to use this version of dgl: 0.4.3

If you do not need to run GeomGCN baseline, you can install any version of dgl or remove the the codes related to the GeomGCN baseline (in process.py and full-supervised.py).

To replicate the results of Table 1, you can using ./table_1_[model_name].sh to obatin the results of the specified model.

To replicate Table 2, you can still use hyparameters used in table_1_[model_name].sh and modify the layers.

To replicate Table B1, you can run ./table_B1.sh

About

Codes for "Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 91.4%
  • Shell 8.6%