Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] Minor Fixes #306

Merged
merged 6 commits into from
Nov 9, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 35 additions & 25 deletions autoPyTorch/api/base_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
STRING_TO_TASK_TYPES,
)
from autoPyTorch.data.base_validator import BaseInputValidator
from autoPyTorch.datasets.base_dataset import BaseDataset
from autoPyTorch.datasets.base_dataset import BaseDataset, BaseDatasetPropertiesType
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutValTypes
from autoPyTorch.ensemble.ensemble_builder import EnsembleBuilderManager
from autoPyTorch.ensemble.singlebest_ensemble import SingleBest
Expand Down Expand Up @@ -105,6 +105,8 @@ class BaseTask:
Args:
seed (int), (default=1): seed to be used for reproducibility.
n_jobs (int), (default=1): number of consecutive processes to spawn.
n_threads (int), (default=1):
number of threads to use for each process.
logging_config (Optional[Dict]): specifies configuration
for logging, if None, it is loaded from the logging.yaml
ensemble_size (int), (default=50): Number of models added to the ensemble built by
Expand Down Expand Up @@ -133,6 +135,7 @@ def __init__(
self,
seed: int = 1,
n_jobs: int = 1,
n_threads: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
Expand All @@ -151,6 +154,7 @@ def __init__(
) -> None:
self.seed = seed
self.n_jobs = n_jobs
self.n_threads = n_threads
self.ensemble_size = ensemble_size
self.ensemble_nbest = ensemble_nbest
self.max_models_on_disc = max_models_on_disc
Expand Down Expand Up @@ -1064,6 +1068,28 @@ def _search(

return self

def _get_fit_dictionary(
self,
dataset_properties: Dict[str, BaseDatasetPropertiesType],
dataset: BaseDataset,
split_id: int = 0
) -> Dict[str, Any]:
X_test = dataset.test_tensors[0].copy() if dataset.test_tensors is not None else None
y_test = dataset.test_tensors[1].copy() if dataset.test_tensors is not None else None
X: Dict[str, Any] = dict({'dataset_properties': dataset_properties,
'backend': self._backend,
'X_train': dataset.train_tensors[0].copy(),
'y_train': dataset.train_tensors[1].copy(),
'X_test': X_test,
'y_test': y_test,
'train_indices': dataset.splits[split_id][0],
'val_indices': dataset.splits[split_id][1],
'split_id': split_id,
'num_run': self._backend.get_next_num_run(),
})
X.update(self.pipeline_options)
return X

def refit(
self,
dataset: BaseDataset,
Expand Down Expand Up @@ -1107,18 +1133,6 @@ def refit(
dataset_properties = dataset.get_dataset_properties(dataset_requirements)
self._backend.save_datamanager(dataset)

X: Dict[str, Any] = dict({'dataset_properties': dataset_properties,
'backend': self._backend,
'X_train': dataset.train_tensors[0],
'y_train': dataset.train_tensors[1],
'X_test': dataset.test_tensors[0] if dataset.test_tensors is not None else None,
'y_test': dataset.test_tensors[1] if dataset.test_tensors is not None else None,
'train_indices': dataset.splits[split_id][0],
'val_indices': dataset.splits[split_id][1],
'split_id': split_id,
'num_run': self._backend.get_next_num_run(),
})
X.update(self.pipeline_options)
if self.models_ is None or len(self.models_) == 0 or self.ensemble_ is None:
self._load_models()

Expand All @@ -1134,6 +1148,10 @@ def refit(
# try to fit the model. If it fails, shuffle the data. This
# could alleviate the problem in algorithms that depend on
# the ordering of the data.
X = self._get_fit_dictionary(
dataset_properties=dataset_properties,
dataset=dataset,
split_id=split_id)
fit_and_suppress_warnings(self._logger, model, X, y=None)

self._clean_logger()
Expand Down Expand Up @@ -1187,18 +1205,10 @@ def fit(self,
pipeline.set_hyperparameters(pipeline_config)

# initialise fit dictionary
X: Dict[str, Any] = dict({'dataset_properties': dataset_properties,
'backend': self._backend,
'X_train': dataset.train_tensors[0],
'y_train': dataset.train_tensors[1],
'X_test': dataset.test_tensors[0] if dataset.test_tensors is not None else None,
'y_test': dataset.test_tensors[1] if dataset.test_tensors is not None else None,
'train_indices': dataset.splits[split_id][0],
'val_indices': dataset.splits[split_id][1],
'split_id': split_id,
'num_run': self._backend.get_next_num_run(),
})
X.update(self.pipeline_options)
X = self._get_fit_dictionary(
dataset_properties=dataset_properties,
dataset=dataset,
split_id=split_id)

fit_and_suppress_warnings(self._logger, pipeline, X, y=None)

Expand Down
10 changes: 6 additions & 4 deletions autoPyTorch/api/tabular_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@ class TabularClassificationTask(BaseTask):
"""
Tabular Classification API to the pipelines.
Args:
seed (int):
seed to be used for reproducibility.
n_jobs (int), (default=1):
number of consecutive processes to spawn.
seed (int), (default=1): seed to be used for reproducibility.
n_jobs (int), (default=1): number of consecutive processes to spawn.
n_threads (int), (default=1):
number of threads to use for each process.
logging_config (Optional[Dict]):
specifies configuration for logging, if None, it is loaded from the logging.yaml
ensemble_size (int), (default=50):
Expand Down Expand Up @@ -64,6 +64,7 @@ def __init__(
self,
seed: int = 1,
n_jobs: int = 1,
n_threads: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
Expand All @@ -82,6 +83,7 @@ def __init__(
super().__init__(
seed=seed,
n_jobs=n_jobs,
n_threads=n_threads,
logging_config=logging_config,
ensemble_size=ensemble_size,
ensemble_nbest=ensemble_nbest,
Expand Down
6 changes: 5 additions & 1 deletion autoPyTorch/api/tabular_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,10 @@ class TabularRegressionTask(BaseTask):
"""
Tabular Regression API to the pipelines.
Args:
seed (int): seed to be used for reproducibility.
seed (int), (default=1): seed to be used for reproducibility.
n_jobs (int), (default=1): number of consecutive processes to spawn.
n_threads (int), (default=1):
number of threads to use for each process.
logging_config (Optional[Dict]): specifies configuration
for logging, if None, it is loaded from the logging.yaml
ensemble_size (int), (default=50): Number of models added to the ensemble built by
Expand Down Expand Up @@ -56,6 +58,7 @@ def __init__(
self,
seed: int = 1,
n_jobs: int = 1,
n_threads: int = 1,
logging_config: Optional[Dict] = None,
ensemble_size: int = 50,
ensemble_nbest: int = 50,
Expand All @@ -74,6 +77,7 @@ def __init__(
super().__init__(
seed=seed,
n_jobs=n_jobs,
n_threads=n_threads,
logging_config=logging_config,
ensemble_size=ensemble_size,
ensemble_nbest=ensemble_nbest,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,19 +39,19 @@ def build_backbone(self, input_shape: Tuple[int, ...]) -> torch.nn.Sequential:
self.config.update(
{"num_units_%d" % (i): num for i, num in enumerate(neuron_counts)}
)
# we are skipping the last layer, as the function get_shaped_neuron_counts
# is built for getting neuron counts, so it will add the out_features to
# the last layer. However, in dropout we dont want to have that, we just
# want to use the shape and not worry about the output.
if self.config['use_dropout']:
# the last dropout ("neuron") value is skipped since it will be equal
# to output_feat, which is 0. This is also skipped when getting the
nabenabe0928 marked this conversation as resolved.
Show resolved Hide resolved
# n_units for the architecture, since, it is mostly implemented for the
# output layer, which is part of the head and not of the backbone.
nabenabe0928 marked this conversation as resolved.
Show resolved Hide resolved
dropout_shape = get_shaped_neuron_counts(
self.config['resnet_shape'], 0, 0, 1000, self.config['num_groups'] + 1
shape=self.config['resnet_shape'],
in_feat=0,
out_feat=0,
max_neurons=self.config["max_dropout"],
nabenabe0928 marked this conversation as resolved.
Show resolved Hide resolved
layer_count=self.config['num_groups'] + 1,
)[:-1]

dropout_shape = [
dropout / 1000 * self.config["max_dropout"] for dropout in dropout_shape
]

self.config.update(
{"dropout_%d" % (i + 1): dropout for i, dropout in enumerate(dropout_shape)}
)
Expand Down
10 changes: 5 additions & 5 deletions autoPyTorch/pipeline/components/setup/network_backbone/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ def backward(ctx: typing.Any,

def shake_get_alpha_beta(is_training: bool, is_cuda: bool
) -> typing.Tuple[torch.tensor, torch.tensor]:
if is_training:
if not is_training:
result = (torch.FloatTensor([0.5]), torch.FloatTensor([0.5]))
return result if not is_cuda else (result[0].cuda(), result[1].cuda())

Expand All @@ -118,11 +118,11 @@ def shake_drop_get_bl(
) -> torch.tensor:
pl = 1 - ((block_index + 1) / num_blocks) * (1 - min_prob_no_shake)

if not is_training:
# Move to torch.randn(1) for reproducibility
bl = torch.tensor(1.0) if torch.randn(1) <= pl else torch.tensor(0.0)
if is_training:
bl = torch.tensor(pl)
# Move to torch.rand(1) for reproducibility
bl = torch.as_tensor(1.0) if torch.rand(1) <= pl else torch.as_tensor(0.0)
else:
bl = torch.as_tensor(pl)

if is_cuda:
bl = bl.cuda()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,23 +59,36 @@ def get_hyperparameter_search_space(
) -> ConfigurationSpace:
cs = ConfigurationSpace()

min_num_layers, max_num_layers = num_layers.value_range
num_layers_hp = get_hyperparameter(num_layers, UniformIntegerHyperparameter)
min_num_layers: int = num_layers.value_range[0] # type: ignore
max_num_layers: int = num_layers.value_range[-1] # type: ignore
num_layers_is_constant = (min_num_layers == max_num_layers)

num_layers_hp = get_hyperparameter(num_layers, UniformIntegerHyperparameter)
activation_hp = get_hyperparameter(activation, CategoricalHyperparameter)
cs.add_hyperparameter(num_layers_hp)

cs.add_hyperparameters([num_layers_hp, activation_hp])
cs.add_condition(CS.GreaterThanCondition(activation_hp, num_layers_hp, 1))
if not num_layers_is_constant:
cs.add_hyperparameter(activation_hp)
cs.add_condition(CS.GreaterThanCondition(activation_hp, num_layers_hp, 1))
elif max_num_layers > 1:
# only add activation if we have more than 1 layer
cs.add_hyperparameter(activation_hp)

for i in range(1, int(max_num_layers)):
num_units_search_space = HyperparameterSearchSpace(hyperparameter=f"units_layer_{i}",
value_range=units_layer.value_range,
default_value=units_layer.default_value,
log=units_layer.log)
for i in range(1, max_num_layers + 1):
ravinkohli marked this conversation as resolved.
Show resolved Hide resolved
num_units_search_space = HyperparameterSearchSpace(
hyperparameter=f"units_layer_{i}",
value_range=units_layer.value_range,
default_value=units_layer.default_value,
log=units_layer.log,
)
num_units_hp = get_hyperparameter(num_units_search_space, UniformIntegerHyperparameter)
cs.add_hyperparameter(num_units_hp)

if i >= int(min_num_layers):
if i >= min_num_layers and not num_layers_is_constant:
# In the case of a constant, the max and min number of layers are the same.
# So no condition is needed. If it is not a constant but a hyperparameter,
# then a condition has to be made so that it accounts for the value of the
# hyperparameter.
cs.add_condition(CS.GreaterThanCondition(num_units_hp, num_layers_hp, i))

return cs
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ def initialization(m: torch.nn.Module) -> None:
torch.nn.Conv2d,
torch.nn.Conv3d,
torch.nn.Linear)):
torch.nn.init.xavier_uniform_(m.weight.data)
torch.nn.init.xavier_normal(m.weight.data)
if m.bias is not None and self.bias_strategy == 'Zero':
torch.nn.init.constant_(m.bias.data, 0.0)
return initialization
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ def __init__(self, batch_size: int = 64,
self.batch_size = batch_size
self.train_data_loader = None # type: Optional[torch.utils.data.DataLoader]
self.val_data_loader = None # type: Optional[torch.utils.data.DataLoader]
self.test_data_loader: Optional[torch.utils.data.DataLoader] = None

# We also support existing datasets!
self.dataset = None
Expand Down Expand Up @@ -69,7 +70,8 @@ def transform(self, X: np.ndarray) -> np.ndarray:
np.ndarray: Transformed features
"""
X.update({'train_data_loader': self.train_data_loader,
'val_data_loader': self.val_data_loader})
'val_data_loader': self.val_data_loader,
'test_data_loader': self.test_data_loader})
return X

def fit(self, X: Dict[str, Any], y: Any = None) -> torch.utils.data.DataLoader:
Expand Down Expand Up @@ -112,7 +114,7 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> torch.utils.data.DataLoader:
shuffle=True,
num_workers=X.get('num_workers', 0),
pin_memory=X.get('pin_memory', True),
drop_last=X.get('drop_last', True),
drop_last=X.get('drop_last', False),
collate_fn=custom_collate_fn,
)

Expand All @@ -126,6 +128,11 @@ def fit(self, X: Dict[str, Any], y: Any = None) -> torch.utils.data.DataLoader:
collate_fn=custom_collate_fn,
)

if X.get('X_test', None) is not None:
self.test_data_loader = self.get_loader(X=X['X_test'],
y=X['y_test'],
batch_size=self.batch_size)

return self

def get_loader(self, X: np.ndarray, y: Optional[np.ndarray] = None, batch_size: int = np.inf,
Expand All @@ -137,6 +144,7 @@ def get_loader(self, X: np.ndarray, y: Optional[np.ndarray] = None, batch_size:

dataset = BaseDataset(
train_tensors=(X, y),
seed=self.random_state.get_state()[1][0],
# This dataset is used for loading test data in a batched format
train_transforms=self.test_transform,
val_transforms=self.test_transform,
Expand Down
15 changes: 2 additions & 13 deletions autoPyTorch/pipeline/tabular_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@

import numpy as np

import sklearn.preprocessing
from sklearn.base import ClassifierMixin

import torch
Expand Down Expand Up @@ -101,13 +100,8 @@ def _predict_proba(self, X: np.ndarray) -> np.ndarray:
loader = self.named_steps['data_loader'].get_loader(X=X)
pred = self.named_steps['network'].predict(loader)
if isinstance(self.dataset_properties['output_shape'], int):
proba = pred[:, :self.dataset_properties['output_shape']]
normalizer = proba.sum(axis=1)[:, np.newaxis]
normalizer[normalizer == 0.0] = 1.0
proba /= normalizer

return proba

# The final layer is always softmax now (`pred` already gives pseudo proba)
return pred
else:
ravinkohli marked this conversation as resolved.
Show resolved Hide resolved
raise ValueError("Expected output_shape to be integer, got {},"
"Tabular Classification only supports 'binary' and 'multiclass' outputs"
Expand Down Expand Up @@ -149,11 +143,6 @@ def predict_proba(self, X: np.ndarray, batch_size: Optional[int] = None) -> np.n
pred_prob = self.predict_proba(X[batch_from:batch_to], batch_size=None)
y[batch_from:batch_to] = pred_prob.astype(np.float32)

# Neural networks might not be fit to produce a [0-1] output
# For instance, after small number of epochs.
y = np.clip(y, 0, 1)
y = sklearn.preprocessing.normalize(y, axis=1, norm='l1')

return y

def score(self, X: np.ndarray, y: np.ndarray,
Expand Down
10 changes: 5 additions & 5 deletions test/test_pipeline/components/setup/test_setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -483,12 +483,12 @@ def test_dropout(self, resnet_shape):
backbone = resnet_backbone.build_backbone((100, 5))
dropout_probabilites = [resnet_backbone.config[key] for key in resnet_backbone.config if 'dropout_' in key]
dropout_shape = get_shaped_neuron_counts(
resnet_shape, 0, 0, 1000, num_groups + 1
shape=resnet_shape,
in_feat=0,
out_feat=0,
max_neurons=max_dropout,
layer_count=num_groups + 1,
)[:-1]

dropout_shape = [
dropout / 1000 * max_dropout for dropout in dropout_shape
]
blocks_dropout = []
for block in backbone:
if isinstance(block, torch.nn.Sequential):
Expand Down