Skip to content

Bug fix in Test API #129

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 26 additions & 20 deletions test/test_api/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,33 +105,33 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
# Search for an existing run key in disc. A individual model might have
# a timeout and hence was not written to disc
for i, (run_key, value) in enumerate(estimator.run_history.data.items()):
if i == 0:
# Ignore dummy run
continue
if 'SUCCESS' not in str(value.status):
continue

run_key_model_run_dir = estimator._backend.get_numrun_directory(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, run_key.config_id + 1, run_key.budget)
if os.path.exists(run_key_model_run_dir):
# Runkey config id is different from the num_run
# more specifically num_run = config_id + 1(dummy)
successful_num_run = run_key.config_id + 1
break

if resampling_strategy == HoldoutValTypes.holdout_validation:
model_file = os.path.join(run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.model")
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.model")
assert os.path.exists(model_file), model_file
model = estimator._backend.load_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model.named_steps['network'].get_network(), torch.nn.Module)
elif resampling_strategy == CrossValTypes.k_fold_cross_validation:
model_file = os.path.join(
run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.cv_model"
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.cv_model"
)
assert os.path.exists(model_file), model_file

model = estimator._backend.load_cv_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model, VotingClassifier)
assert len(model.estimators_) == 3
assert isinstance(model.estimators_[0].named_steps['network'].get_network(),
Expand All @@ -142,7 +142,7 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
# Make sure that predictions on the test data are printed and make sense
test_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'test', estimator.seed, run_key.config_id,
'test', estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(test_prediction), test_prediction
assert np.shape(np.load(test_prediction, allow_pickle=True))[0] == np.shape(X_test)[0]
Expand All @@ -152,7 +152,7 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
ensemble_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'ensemble',
estimator.seed, run_key.config_id,
estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(ensemble_prediction), ensemble_prediction
assert np.shape(np.load(ensemble_prediction, allow_pickle=True))[0] == np.shape(
Expand Down Expand Up @@ -213,10 +213,16 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularRegressionTask(
backend=backend,
resampling_strategy=resampling_strategy,
include_components=include
)

estimator.search(
Expand Down Expand Up @@ -267,32 +273,32 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
# Search for an existing run key in disc. A individual model might have
# a timeout and hence was not written to disc
for i, (run_key, value) in enumerate(estimator.run_history.data.items()):
if i == 0:
# Ignore dummy run
continue
if 'SUCCESS' not in str(value.status):
continue

run_key_model_run_dir = estimator._backend.get_numrun_directory(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, run_key.config_id + 1, run_key.budget)
if os.path.exists(run_key_model_run_dir):
# Runkey config id is different from the num_run
# more specifically num_run = config_id + 1(dummy)
successful_num_run = run_key.config_id + 1
break

if resampling_strategy == HoldoutValTypes.holdout_validation:
model_file = os.path.join(run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.model")
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.model")
assert os.path.exists(model_file), model_file
model = estimator._backend.load_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model.named_steps['network'].get_network(), torch.nn.Module)
elif resampling_strategy == CrossValTypes.k_fold_cross_validation:
model_file = os.path.join(
run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.cv_model"
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.cv_model"
)
assert os.path.exists(model_file), model_file
model = estimator._backend.load_cv_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model, VotingRegressor)
assert len(model.estimators_) == 3
assert isinstance(model.estimators_[0].named_steps['network'].get_network(),
Expand All @@ -303,7 +309,7 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
# Make sure that predictions on the test data are printed and make sense
test_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'test', estimator.seed, run_key.config_id,
'test', estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(test_prediction), test_prediction
assert np.shape(np.load(test_prediction, allow_pickle=True))[0] == np.shape(X_test)[0]
Expand All @@ -313,7 +319,7 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
ensemble_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'ensemble',
estimator.seed, run_key.config_id,
estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(ensemble_prediction), ensemble_prediction
assert np.shape(np.load(ensemble_prediction, allow_pickle=True))[0] == np.shape(
Expand Down