Open
Description
NOTE: ISSUES ARE NOT FOR CODE HELP - Ask for Help at https://stackoverflow.com
Your issue may already be reported!
Also, please search on the issue tracker before creating one.
- I'm submitting a ...
- bug report
Issue Description
- When Issue Happens
Running time-series forecasting example. - Steps To Reproduce
- Install autopytorch-v0.2 and run time-series forecasting example with user warning displayed.
- Copy https://github.com/automl/Auto-PyTorch/blob/master/autoPyTorch/configs/forecasting_init_cfgs.json to corresponding auto-pytorch repo in python site-package directory.
- Run time-series forecasting example with user warning allowed.
Expected Behavior
Traverse 9 initial designs and do evaluation on each, then different random search configurations will be evaluated.
Current Behavior
After the user warning is raised, only a single default configuration is evaluated before random searching begins.
Your Code
same as https://github.com/automl/Auto-PyTorch/blob/master/examples/20_basics/example_time_series_forecasting.py except allowing user warnings.
Error Message
/home/robby/miniconda3/envs/auto-pytorch/lib/python3.8/site-packages/autoPyTorch/optimizer/utils.py:97: UserWarning: Failed to convert {'data_loader:batch_size': 32, 'data_loader:backcast': False, 'data_loader:sample_strategy': 'SeqUniform', 'data_loader:num_batches_per_epoch': 50, 'data_loader:transform_time_features': False, 'lr_scheduler:__choice__': 'ReduceLROnPlateau', 'lr_scheduler:ReduceLROnPlateau:mode': 'max', 'lr_scheduler:ReduceLROnPlateau:factor': 0.5, 'lr_scheduler:ReduceLROnPlateau:patience': 10, 'optimizer:__choice__': 'AdamOptimizer', 'optimizer:AdamOptimizer:lr': 0.001, 'optimizer:AdamOptimizer:weight_decay': 1e-08, 'optimizer:AdamOptimizer:beta1': 0.9, 'optimizer:AdamOptimizer:beta2': 0.999, 'network_init:__choice__': 'XavierInit', 'network_init:XavierInit:bias_strategy': 'Normal', 'target_scaler:scaling_mode': 'mean_abs', 'trainer:__choice__': 'ForecastingStandardTrainer', 'network_embedding:__choice__': 'NoEmbedding', 'data_loader:window_size': 2, 'loss:__choice__': 'DistributionLoss', 'loss:DistributionLoss:dist_cls': 'studentT', 'loss:DistributionLoss:forecast_strategy': 'sample', 'loss:DistributionLoss:aggregation': 'median', 'loss:DistributionLoss:num_samples': 100, 'network_backbone:__choice__': 'flat_encoder', 'network_backbone:flat_encoder:__choice__': 'MLPEncoder', 'network_backbone:flat_encoder:MLPEncoder:num_groups': 1, 'network_backbone:flat_encoder:MLPEncoder:num_units_1': 40, 'network_backbone:flat_encoder:MLPEncoder:activation': 'relu', 'network_backbone:flat_encoder:MLPEncoder:use_dropout': False, 'network_backbone:flat_encoder:MLPEncoder:normalization': 'NoNorm', 'network_backbone:flat_encoder:MLPDecoder:num_layers': 0, 'network_backbone:flat_encoder:MLPDecoder:has_local_layer': True, 'network_backbone:flat_encoder:MLPDecoder:units_local_layer': 40, 'feature_encoding:__choice__': 'OneHotEncoder', 'scaler:scaling_mode': 'standard'} into a Configuration with error Trying to set illegal value 'OneHotEncoder' (type '<class 'str'>') for hyperparameter 'feature_encoding:__choice__, Type: Categorical, Choices: {NoEncoder}, Default: NoEncoder' (default-value has type '<class 'str'>').. Therefore, it can't be used as an initial configuration as it does not match the current config space.
warnings.warn(f"Failed to convert {configuration_dict} into"
Your Local Environment
- Operating System, version
Ubuntu 20.04 - Python, version
Python 3.8 - Outputs of
pip freeze
orconda list
pytorch=1.12+cu116