Skip to content

Commit dc473bb

Browse files
author
Github Actions
committed
nabenabe0928: [fix] Hotfix debug no training in simple intensifier (#370)
1 parent cc16148 commit dc473bb

34 files changed

+267
-267
lines changed

development/_downloads/83b132442a977189d27fd09560b2bd34/example_single_configuration.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@
9898
},
9999
"outputs": [],
100100
"source": [
101-
"pipeline, run_info, run_value, dataset = estimator.fit_pipeline(dataset=dataset,\n configuration=configuration,\n budget_type='epochs',\n budget=10,\n run_time_limit_secs=100\n )\n\n# The fit_pipeline command also returns a named tuple with the pipeline constraints\nprint(run_info)\n\n# The fit_pipeline command also returns a named tuple with train/test performance\nprint(run_value)\n\n# This object complies with Scikit-Learn Pipeline API.\n# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html\nprint(pipeline.named_steps)"
101+
"pipeline, run_info, run_value, dataset = estimator.fit_pipeline(dataset=dataset,\n configuration=configuration,\n budget_type='epochs',\n budget=5,\n run_time_limit_secs=75\n )\n\n# The fit_pipeline command also returns a named tuple with the pipeline constraints\nprint(run_info)\n\n# The fit_pipeline command also returns a named tuple with train/test performance\nprint(run_value)\n\n# This object complies with Scikit-Learn Pipeline API.\n# https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html\nprint(pipeline.named_steps)"
102102
]
103103
}
104104
],

development/_downloads/b71f91b170d4a46b842cd9568511ced2/example_single_configuration.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -66,8 +66,8 @@
6666
pipeline, run_info, run_value, dataset = estimator.fit_pipeline(dataset=dataset,
6767
configuration=configuration,
6868
budget_type='epochs',
69-
budget=10,
70-
run_time_limit_secs=100
69+
budget=5,
70+
run_time_limit_secs=75
7171
)
7272

7373
# The fit_pipeline command also returns a named tuple with the pipeline constraints
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -86,12 +86,16 @@ Image Classification
8686
________________________________________
8787
Configuration:
8888
image_augmenter:GaussianBlur:use_augmenter, Value: False
89-
image_augmenter:GaussianNoise:sigma_offset, Value: 1.1139913028820034
89+
image_augmenter:GaussianNoise:sigma_offset, Value: 2.6813471803623146
9090
image_augmenter:GaussianNoise:use_augmenter, Value: True
91-
image_augmenter:RandomAffine:use_augmenter, Value: False
91+
image_augmenter:RandomAffine:rotate, Value: 121
92+
image_augmenter:RandomAffine:scale_offset, Value: 0.001572340665842953
93+
image_augmenter:RandomAffine:shear, Value: 11
94+
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.3794747658517839
95+
image_augmenter:RandomAffine:use_augmenter, Value: True
9296
image_augmenter:RandomCutout:use_augmenter, Value: False
9397
image_augmenter:Resize:use_augmenter, Value: False
94-
image_augmenter:ZeroPadAndCrop:percent, Value: 0.261983365182016
98+
image_augmenter:ZeroPadAndCrop:percent, Value: 0.1087846184479066
9599
normalizer:__choice__, Value: 'NoNormalizer'
96100

97101
Fitting the pipeline...
@@ -171,7 +175,7 @@ Image Classification
171175
172176
.. rst-class:: sphx-glr-timing
173177

174-
**Total running time of the script:** ( 0 minutes 5.513 seconds)
178+
**Total running time of the script:** ( 0 minutes 5.177 seconds)
175179

176180

177181
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 19 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ Search for an ensemble of machine learning algorithms
134134
.. code-block:: none
135135
136136
137-
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f01b0687f70>
137+
<autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7f4512b33a60>
138138
139139
140140
@@ -165,25 +165,27 @@ Print the final ensemble performance
165165

166166
.. code-block:: none
167167
168-
{'accuracy': 0.8670520231213873}
169-
| | Preprocessing | Estimator | Weight |
170-
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
171-
| 0 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
172-
| 1 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
173-
| 2 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
174-
| 3 | None | CBLearner | 0.14 |
175-
| 4 | SimpleImputer,OneHotEncoder,Normalizer,PowerTransformer | embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
176-
| 5 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
177-
| 6 | None | RFLearner | 0.06 |
178-
| 7 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
179-
| 8 | None | SVMLearner | 0.04 |
180-
| 9 | None | KNNLearner | 0.02 |
168+
{'accuracy': 0.8554913294797688}
169+
| | Preprocessing | Estimator | Weight |
170+
|---:|:----------------------------------------------------------|:-------------------------------------------------------------------|---------:|
171+
| 0 | SimpleImputer,OneHotEncoder,Normalizer,KernelPCA | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.18 |
172+
| 1 | SimpleImputer,NoEncoder,Normalizer,KitchenSink | no embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.14 |
173+
| 2 | None | RFLearner | 0.14 |
174+
| 3 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | embedding,MLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
175+
| 4 | None | SVMLearner | 0.1 |
176+
| 5 | None | CBLearner | 0.08 |
177+
| 6 | None | KNNLearner | 0.08 |
178+
| 7 | None | ETLearner | 0.06 |
179+
| 8 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
180+
| 9 | SimpleImputer,NoEncoder,Normalizer,KernelPCA | no embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
181+
| 10 | SimpleImputer,OneHotEncoder,MinMaxScaler,PowerTransformer | embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
182+
| 11 | SimpleImputer,OneHotEncoder,MinMaxScaler,TruncSVD | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
181183
autoPyTorch results:
182184
Dataset name: Australian
183185
Optimisation Metric: accuracy
184186
Best validation score: 0.8713450292397661
185-
Number of target algorithm runs: 26
186-
Number of successful target algorithm runs: 23
187+
Number of target algorithm runs: 30
188+
Number of successful target algorithm runs: 27
187189
Number of crashed target algorithm runs: 2
188190
Number of target algorithms that exceeded the time limit: 1
189191
Number of target algorithms that exceeded the memory limit: 0
@@ -195,7 +197,7 @@ Print the final ensemble performance
195197
196198
.. rst-class:: sphx-glr-timing
197199

198-
**Total running time of the script:** ( 5 minutes 22.339 seconds)
200+
**Total running time of the script:** ( 5 minutes 22.397 seconds)
199201

200202

201203
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ Search for an ensemble of machine learning algorithms
125125
.. code-block:: none
126126
127127
128-
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f024236b970>
128+
<autoPyTorch.api.tabular_regression.TabularRegressionTask object at 0x7f45ad5d9d90>
129129
130130
131131
@@ -167,11 +167,11 @@ Print the final ensemble performance
167167
| 2 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
168168
| 3 | None | LGBMLearner | 0.04 |
169169
autoPyTorch results:
170-
Dataset name: 93d2e6ca-7deb-11ec-8795-c5c435ed4133
170+
Dataset name: 8f01662f-7f85-11ec-8771-8b89ceeb781f
171171
Optimisation Metric: r2
172172
Best validation score: 0.8670098636440993
173-
Number of target algorithm runs: 32
174-
Number of successful target algorithm runs: 28
173+
Number of target algorithm runs: 34
174+
Number of successful target algorithm runs: 30
175175
Number of crashed target algorithm runs: 3
176176
Number of target algorithms that exceeded the time limit: 1
177177
Number of target algorithms that exceeded the memory limit: 0
@@ -183,7 +183,7 @@ Print the final ensemble performance
183183
184184
.. rst-class:: sphx-glr-timing
185185

186-
**Total running time of the script:** ( 5 minutes 35.019 seconds)
186+
**Total running time of the script:** ( 5 minutes 31.087 seconds)
187187

188188

189189
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**11:02.871** total execution time for **examples_20_basics** files:
8+
**10:58.661** total execution time for **examples_20_basics** files:
99

1010
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:35.019 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:31.087 | 0.0 MB |
1212
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:22.339 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 05:22.397 | 0.0 MB |
1414
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:05.513 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:05.177 | 0.0 MB |
1616
+--------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)