@@ -126,8 +126,8 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
126
126
< span class ="kn "> from</ span > < span class ="nn "> autoPyTorch.data.tabular_validator</ span > < span class ="kn "> import</ span > < span class ="n "> TabularInputValidator</ span >
127
127
< span class ="kn "> from</ span > < span class ="nn "> autoPyTorch.datasets.base_dataset</ span > < span class ="kn "> import</ span > < span class ="n "> BaseDatasetPropertiesType</ span >
128
128
< span class ="kn "> from</ span > < span class ="nn "> autoPyTorch.datasets.resampling_strategy</ span > < span class ="kn "> import</ span > < span class ="p "> (</ span >
129
- < span class ="n "> CrossValTypes</ span > < span class ="p "> ,</ span >
130
129
< span class ="n "> HoldoutValTypes</ span > < span class ="p "> ,</ span >
130
+ < span class ="n "> ResamplingStrategies</ span > < span class ="p "> ,</ span >
131
131
< span class ="p "> )</ span >
132
132
< span class ="kn "> from</ span > < span class ="nn "> autoPyTorch.datasets.tabular_dataset</ span > < span class ="kn "> import</ span > < span class ="n "> TabularDataset</ span >
133
133
< span class ="kn "> from</ span > < span class ="nn "> autoPyTorch.evaluation.utils</ span > < span class ="kn "> import</ span > < span class ="n "> DisableFileOutputParameters</ span >
@@ -177,8 +177,15 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
177
177
< span class ="sd "> name and Value is an Iterable of the names of the components</ span >
178
178
< span class ="sd "> to exclude. All except these components will be present in</ span >
179
179
< span class ="sd "> the search space.</ span >
180
+ < span class ="sd "> resampling_strategy resampling_strategy (RESAMPLING_STRATEGIES),</ span >
181
+ < span class ="sd "> (default=HoldoutValTypes.holdout_validation):</ span >
182
+ < span class ="sd "> strategy to split the training data.</ span >
183
+ < span class ="sd "> resampling_strategy_args (Optional[Dict[str, Any]]): arguments</ span >
184
+ < span class ="sd "> required for the chosen resampling strategy. If None, uses</ span >
185
+ < span class ="sd "> the default values provided in DEFAULT_RESAMPLING_PARAMETERS</ span >
186
+ < span class ="sd "> in ```datasets/resampling_strategy.py```.</ span >
180
187
< span class ="sd "> search_space_updates (Optional[HyperparameterSearchSpaceUpdates]):</ span >
181
- < span class ="sd "> search space updates that can be used to modify the search</ span >
188
+ < span class ="sd "> Search space updates that can be used to modify the search</ span >
182
189
< span class ="sd "> space of particular components or choice modules of the pipeline</ span >
183
190
< span class ="sd "> """</ span >
184
191
< span class ="k "> def</ span > < span class ="fm "> __init__</ span > < span class ="p "> (</ span >
@@ -196,7 +203,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
196
203
< span class ="n "> delete_output_folder_after_terminate</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span >
197
204
< span class ="n "> include_components</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Dict</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ,</ span > < span class ="n "> Any</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
198
205
< span class ="n "> exclude_components</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Dict</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ,</ span > < span class ="n "> Any</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
199
- < span class ="n "> resampling_strategy</ span > < span class ="p "> :</ span > < span class ="n "> Union </ span > < span class =" p " > [ </ span > < span class =" n " > CrossValTypes </ span > < span class =" p " > , </ span > < span class =" n " > HoldoutValTypes </ span > < span class =" p " > ] </ span > < span class ="o "> =</ span > < span class ="n "> HoldoutValTypes</ span > < span class ="o "> .</ span > < span class ="n "> holdout_validation</ span > < span class ="p "> ,</ span >
206
+ < span class ="n "> resampling_strategy</ span > < span class ="p "> :</ span > < span class ="n "> ResamplingStrategies </ span > < span class ="o "> =</ span > < span class ="n "> HoldoutValTypes</ span > < span class ="o "> .</ span > < span class ="n "> holdout_validation</ span > < span class ="p "> ,</ span >
200
207
< span class ="n "> resampling_strategy_args</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Dict</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ,</ span > < span class ="n "> Any</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
201
208
< span class ="n "> backend</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Backend</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
202
209
< span class ="n "> search_space_updates</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> HyperparameterSearchSpaceUpdates</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span >
@@ -266,7 +273,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
266
273
< span class ="n "> y_train</ span > < span class ="p "> :</ span > < span class ="n "> Union</ span > < span class ="p "> [</ span > < span class ="n "> List</ span > < span class ="p "> ,</ span > < span class ="n "> pd</ span > < span class ="o "> .</ span > < span class ="n "> DataFrame</ span > < span class ="p "> ,</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> ndarray</ span > < span class ="p "> ],</ span >
267
274
< span class ="n "> X_test</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Union</ span > < span class ="p "> [</ span > < span class ="n "> List</ span > < span class ="p "> ,</ span > < span class ="n "> pd</ span > < span class ="o "> .</ span > < span class ="n "> DataFrame</ span > < span class ="p "> ,</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> ndarray</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
268
275
< span class ="n "> y_test</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Union</ span > < span class ="p "> [</ span > < span class ="n "> List</ span > < span class ="p "> ,</ span > < span class ="n "> pd</ span > < span class ="o "> .</ span > < span class ="n "> DataFrame</ span > < span class ="p "> ,</ span > < span class ="n "> np</ span > < span class ="o "> .</ span > < span class ="n "> ndarray</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
269
- < span class ="n "> resampling_strategy</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Union </ span > < span class ="p "> [ </ span > < span class =" n " > CrossValTypes </ span > < span class =" p " > , </ span > < span class =" n " > HoldoutValTypes </ span > < span class =" p " > ] ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
276
+ < span class ="n "> resampling_strategy</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> ResamplingStrategies </ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
270
277
< span class ="n "> resampling_strategy_args</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="n "> Dict</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ,</ span > < span class ="n "> Any</ span > < span class ="p "> ]]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
271
278
< span class ="n "> dataset_name</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> str</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
272
279
< span class ="p "> )</ span > < span class ="o "> -></ span > < span class ="n "> Tuple</ span > < span class ="p "> [</ span > < span class ="n "> TabularDataset</ span > < span class ="p "> ,</ span > < span class ="n "> TabularInputValidator</ span > < span class ="p "> ]:</ span >
@@ -283,7 +290,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
283
290
< span class ="sd "> Testing feature set</ span >
284
291
< span class ="sd "> y_test (Optional[Union[List, pd.DataFrame, np.ndarray]]):</ span >
285
292
< span class ="sd "> Testing target set</ span >
286
- < span class ="sd "> resampling_strategy (Optional[Union[CrossValTypes, HoldoutValTypes] ]):</ span >
293
+ < span class ="sd "> resampling_strategy (Optional[RESAMPLING_STRATEGIES ]):</ span >
287
294
< span class ="sd "> Strategy to split the training data. if None, uses</ span >
288
295
< span class ="sd "> HoldoutValTypes.holdout_validation.</ span >
289
296
< span class ="sd "> resampling_strategy_args (Optional[Dict[str, Any]]):</ span >
0 commit comments