Skip to content

Commit cc16148

Browse files
author
Github Actions
committed
Ravin Kohli: [ADD] Test evaluator (#368)
1 parent 536951b commit cc16148

34 files changed

+363
-331
lines changed
Binary file not shown.
Binary file not shown.
Loading
Loading
Loading
Loading

development/_modules/autoPyTorch/api/tabular_classification.html

Lines changed: 12 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -126,8 +126,8 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
126126
<span class="kn">from</span> <span class="nn">autoPyTorch.data.tabular_validator</span> <span class="kn">import</span> <span class="n">TabularInputValidator</span>
127127
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.base_dataset</span> <span class="kn">import</span> <span class="n">BaseDatasetPropertiesType</span>
128128
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.resampling_strategy</span> <span class="kn">import</span> <span class="p">(</span>
129-
<span class="n">CrossValTypes</span><span class="p">,</span>
130129
<span class="n">HoldoutValTypes</span><span class="p">,</span>
130+
<span class="n">ResamplingStrategies</span><span class="p">,</span>
131131
<span class="p">)</span>
132132
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.tabular_dataset</span> <span class="kn">import</span> <span class="n">TabularDataset</span>
133133
<span class="kn">from</span> <span class="nn">autoPyTorch.evaluation.utils</span> <span class="kn">import</span> <span class="n">DisableFileOutputParameters</span>
@@ -177,8 +177,15 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
177177
<span class="sd"> name and Value is an Iterable of the names of the components</span>
178178
<span class="sd"> to exclude. All except these components will be present in</span>
179179
<span class="sd"> the search space.</span>
180+
<span class="sd"> resampling_strategy resampling_strategy (RESAMPLING_STRATEGIES),</span>
181+
<span class="sd"> (default=HoldoutValTypes.holdout_validation):</span>
182+
<span class="sd"> strategy to split the training data.</span>
183+
<span class="sd"> resampling_strategy_args (Optional[Dict[str, Any]]): arguments</span>
184+
<span class="sd"> required for the chosen resampling strategy. If None, uses</span>
185+
<span class="sd"> the default values provided in DEFAULT_RESAMPLING_PARAMETERS</span>
186+
<span class="sd"> in ```datasets/resampling_strategy.py```.</span>
180187
<span class="sd"> search_space_updates (Optional[HyperparameterSearchSpaceUpdates]):</span>
181-
<span class="sd"> search space updates that can be used to modify the search</span>
188+
<span class="sd"> Search space updates that can be used to modify the search</span>
182189
<span class="sd"> space of particular components or choice modules of the pipeline</span>
183190
<span class="sd"> &quot;&quot;&quot;</span>
184191
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
@@ -196,7 +203,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
196203
<span class="n">delete_output_folder_after_terminate</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
197204
<span class="n">include_components</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
198205
<span class="n">exclude_components</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
199-
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">CrossValTypes</span><span class="p">,</span> <span class="n">HoldoutValTypes</span><span class="p">]</span> <span class="o">=</span> <span class="n">HoldoutValTypes</span><span class="o">.</span><span class="n">holdout_validation</span><span class="p">,</span>
206+
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">ResamplingStrategies</span> <span class="o">=</span> <span class="n">HoldoutValTypes</span><span class="o">.</span><span class="n">holdout_validation</span><span class="p">,</span>
200207
<span class="n">resampling_strategy_args</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
201208
<span class="n">backend</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Backend</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
202209
<span class="n">search_space_updates</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">HyperparameterSearchSpaceUpdates</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
@@ -266,7 +273,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
266273
<span class="n">y_train</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">],</span>
267274
<span class="n">X_test</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
268275
<span class="n">y_test</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
269-
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">CrossValTypes</span><span class="p">,</span> <span class="n">HoldoutValTypes</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
276+
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">ResamplingStrategies</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
270277
<span class="n">resampling_strategy_args</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
271278
<span class="n">dataset_name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
272279
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">TabularDataset</span><span class="p">,</span> <span class="n">TabularInputValidator</span><span class="p">]:</span>
@@ -283,7 +290,7 @@ <h1>Source code for autoPyTorch.api.tabular_classification</h1><div class="highl
283290
<span class="sd"> Testing feature set</span>
284291
<span class="sd"> y_test (Optional[Union[List, pd.DataFrame, np.ndarray]]):</span>
285292
<span class="sd"> Testing target set</span>
286-
<span class="sd"> resampling_strategy (Optional[Union[CrossValTypes, HoldoutValTypes]]):</span>
293+
<span class="sd"> resampling_strategy (Optional[RESAMPLING_STRATEGIES]):</span>
287294
<span class="sd"> Strategy to split the training data. if None, uses</span>
288295
<span class="sd"> HoldoutValTypes.holdout_validation.</span>
289296
<span class="sd"> resampling_strategy_args (Optional[Dict[str, Any]]):</span>

development/_modules/autoPyTorch/api/tabular_regression.html

Lines changed: 12 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -126,8 +126,8 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
126126
<span class="kn">from</span> <span class="nn">autoPyTorch.data.tabular_validator</span> <span class="kn">import</span> <span class="n">TabularInputValidator</span>
127127
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.base_dataset</span> <span class="kn">import</span> <span class="n">BaseDatasetPropertiesType</span>
128128
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.resampling_strategy</span> <span class="kn">import</span> <span class="p">(</span>
129-
<span class="n">CrossValTypes</span><span class="p">,</span>
130129
<span class="n">HoldoutValTypes</span><span class="p">,</span>
130+
<span class="n">ResamplingStrategies</span><span class="p">,</span>
131131
<span class="p">)</span>
132132
<span class="kn">from</span> <span class="nn">autoPyTorch.datasets.tabular_dataset</span> <span class="kn">import</span> <span class="n">TabularDataset</span>
133133
<span class="kn">from</span> <span class="nn">autoPyTorch.evaluation.utils</span> <span class="kn">import</span> <span class="n">DisableFileOutputParameters</span>
@@ -177,8 +177,15 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
177177
<span class="sd"> name and Value is an Iterable of the names of the components</span>
178178
<span class="sd"> to exclude. All except these components will be present in</span>
179179
<span class="sd"> the search space.</span>
180+
<span class="sd"> resampling_strategy resampling_strategy (RESAMPLING_STRATEGIES),</span>
181+
<span class="sd"> (default=HoldoutValTypes.holdout_validation):</span>
182+
<span class="sd"> strategy to split the training data.</span>
183+
<span class="sd"> resampling_strategy_args (Optional[Dict[str, Any]]): arguments</span>
184+
<span class="sd"> required for the chosen resampling strategy. If None, uses</span>
185+
<span class="sd"> the default values provided in DEFAULT_RESAMPLING_PARAMETERS</span>
186+
<span class="sd"> in ```datasets/resampling_strategy.py```.</span>
180187
<span class="sd"> search_space_updates (Optional[HyperparameterSearchSpaceUpdates]):</span>
181-
<span class="sd"> search space updates that can be used to modify the search</span>
188+
<span class="sd"> Search space updates that can be used to modify the search</span>
182189
<span class="sd"> space of particular components or choice modules of the pipeline</span>
183190
<span class="sd"> &quot;&quot;&quot;</span>
184191

@@ -197,7 +204,7 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
197204
<span class="n">delete_output_folder_after_terminate</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
198205
<span class="n">include_components</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
199206
<span class="n">exclude_components</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
200-
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">CrossValTypes</span><span class="p">,</span> <span class="n">HoldoutValTypes</span><span class="p">]</span> <span class="o">=</span> <span class="n">HoldoutValTypes</span><span class="o">.</span><span class="n">holdout_validation</span><span class="p">,</span>
207+
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">ResamplingStrategies</span> <span class="o">=</span> <span class="n">HoldoutValTypes</span><span class="o">.</span><span class="n">holdout_validation</span><span class="p">,</span>
201208
<span class="n">resampling_strategy_args</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
202209
<span class="n">backend</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Backend</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
203210
<span class="n">search_space_updates</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">HyperparameterSearchSpaceUpdates</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span>
@@ -267,7 +274,7 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
267274
<span class="n">y_train</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">],</span>
268275
<span class="n">X_test</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
269276
<span class="n">y_test</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
270-
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">CrossValTypes</span><span class="p">,</span> <span class="n">HoldoutValTypes</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
277+
<span class="n">resampling_strategy</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">ResamplingStrategies</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
271278
<span class="n">resampling_strategy_args</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
272279
<span class="n">dataset_name</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
273280
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">TabularDataset</span><span class="p">,</span> <span class="n">TabularInputValidator</span><span class="p">]:</span>
@@ -284,7 +291,7 @@ <h1>Source code for autoPyTorch.api.tabular_regression</h1><div class="highlight
284291
<span class="sd"> Testing feature set</span>
285292
<span class="sd"> y_test (Optional[Union[List, pd.DataFrame, np.ndarray]]):</span>
286293
<span class="sd"> Testing target set</span>
287-
<span class="sd"> resampling_strategy (Optional[Union[CrossValTypes, HoldoutValTypes]]):</span>
294+
<span class="sd"> resampling_strategy (Optional[RESAMPLING_STRATEGIES]):</span>
288295
<span class="sd"> Strategy to split the training data. if None, uses</span>
289296
<span class="sd"> HoldoutValTypes.holdout_validation.</span>
290297
<span class="sd"> resampling_strategy_args (Optional[Dict[str, Any]]):</span>

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 6 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -85,20 +85,13 @@ Image Classification
8585
Pipeline Random Config:
8686
________________________________________
8787
Configuration:
88-
image_augmenter:GaussianBlur:sigma_min, Value: 0.7252880928545244
89-
image_augmenter:GaussianBlur:sigma_offset, Value: 1.521238468454762
90-
image_augmenter:GaussianBlur:use_augmenter, Value: True
91-
image_augmenter:GaussianNoise:sigma_offset, Value: 1.3019933264526289
88+
image_augmenter:GaussianBlur:use_augmenter, Value: False
89+
image_augmenter:GaussianNoise:sigma_offset, Value: 1.1139913028820034
9290
image_augmenter:GaussianNoise:use_augmenter, Value: True
93-
image_augmenter:RandomAffine:rotate, Value: 273
94-
image_augmenter:RandomAffine:scale_offset, Value: 0.32933509809921574
95-
image_augmenter:RandomAffine:shear, Value: 18
96-
image_augmenter:RandomAffine:translate_percent_offset, Value: 0.12689372744350622
97-
image_augmenter:RandomAffine:use_augmenter, Value: True
98-
image_augmenter:RandomCutout:p, Value: 0.2567527903290805
99-
image_augmenter:RandomCutout:use_augmenter, Value: True
91+
image_augmenter:RandomAffine:use_augmenter, Value: False
92+
image_augmenter:RandomCutout:use_augmenter, Value: False
10093
image_augmenter:Resize:use_augmenter, Value: False
101-
image_augmenter:ZeroPadAndCrop:percent, Value: 0.38501712446074526
94+
image_augmenter:ZeroPadAndCrop:percent, Value: 0.261983365182016
10295
normalizer:__choice__, Value: 'NoNormalizer'
10396

10497
Fitting the pipeline...
@@ -178,7 +171,7 @@ Image Classification
178171
179172
.. rst-class:: sphx-glr-timing
180173

181-
**Total running time of the script:** ( 0 minutes 8.384 seconds)
174+
**Total running time of the script:** ( 0 minutes 5.513 seconds)
182175

183176

184177
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

0 commit comments

Comments
 (0)