Skip to content

Commit bad9dec

Browse files
author
Github Actions
committed
Ravin Kohli: Reduce run time of the test (#205)
1 parent 0f18b59 commit bad9dec

File tree

34 files changed

+254
-136
lines changed

34 files changed

+254
-136
lines changed

development/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: fe944f1b1d3cb4e7269e41b4f8b98b0d
3+
config: 1e4ee4ad449380a01eb5bd355b029d69
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

development/_downloads/38ebc52de63d1626596d1647c695c721/example_tabular_regression.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,

development/_downloads/3b0b756ccfcac69e6a1673e56f2f543f/example_visualization.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,

development/_downloads/3f9c66ebcc4532fdade3cdaa4d769bde/example_custom_configuration_space.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,

development/_downloads/4cbefcc88d68bf84110d315dc5fdb8e1/example_resampling_strategy.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,

development/_downloads/6ee656697d20c490e1d49bdbfb69d108/example_tabular_classification.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,

development/_downloads/aabde7b67f18388826b238683edce405/example_image_classification.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@
4646
"name": "python",
4747
"nbconvert_exporter": "python",
4848
"pygments_lexer": "ipython3",
49-
"version": "3.8.9"
49+
"version": "3.8.10"
5050
}
5151
},
5252
"nbformat": 4,
Binary file not shown.
Binary file not shown.
Loading
Loading

development/_sources/examples/20_basics/example_image_classification.rst.txt

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@ Image Classification
5454
Extracting ../datasets/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ../datasets/FashionMNIST/raw
5555

5656
Processing...
57-
/opt/hostedtoolcache/Python/3.8.9/x64/lib/python3.8/site-packages/torchvision/datasets/mnist.py:502: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:143.)
57+
/opt/hostedtoolcache/Python/3.8.10/x64/lib/python3.8/site-packages/torchvision/datasets/mnist.py:502: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:143.)
5858
return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
5959
Done!
6060
Pipeline CS:
@@ -89,21 +89,22 @@ Image Classification
8989
Pipeline Random Config:
9090
________________________________________
9191
Configuration:
92-
image_augmenter:GaussianBlur:use_augmenter, Value: False
93-
image_augmenter:GaussianNoise:sigma_offset, Value: 0.9350664188119167
94-
image_augmenter:GaussianNoise:use_augmenter, Value: True
92+
image_augmenter:GaussianBlur:sigma_min, Value: 0.0234546653439216
93+
image_augmenter:GaussianBlur:sigma_offset, Value: 1.9419513237876684
94+
image_augmenter:GaussianBlur:use_augmenter, Value: True
95+
image_augmenter:GaussianNoise:use_augmenter, Value: False
9596
image_augmenter:RandomAffine:use_augmenter, Value: False
9697
image_augmenter:RandomCutout:use_augmenter, Value: False
9798
image_augmenter:Resize:use_augmenter, Value: True
98-
image_augmenter:ZeroPadAndCrop:percent, Value: 0.2883176736666994
99-
normalizer:__choice__, Value: 'ImageNormalizer'
99+
image_augmenter:ZeroPadAndCrop:percent, Value: 0.13952632480424082
100+
normalizer:__choice__, Value: 'NoNormalizer'
100101

101102
Fitting the pipeline...
102103
________________________________________
103104
ImageClassificationPipeline
104105
________________________________________
105106
0-) normalizer:
106-
ImageNormalizer
107+
NoNormalizer
107108

108109
1-) preprocessing:
109110
EarlyPreprocessing
@@ -175,7 +176,7 @@ Image Classification
175176
176177
.. rst-class:: sphx-glr-timing
177178

178-
**Total running time of the script:** ( 0 minutes 7.534 seconds)
179+
**Total running time of the script:** ( 0 minutes 9.639 seconds)
179180

180181

181182
.. _sphx_glr_download_examples_20_basics_example_image_classification.py:

development/_sources/examples/20_basics/example_tabular_classification.rst.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ with AutoPyTorch
3636

3737
.. code-block:: none
3838
39-
<smac.runhistory.runhistory.RunHistory object at 0x7f3d47b451f0> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+
<smac.runhistory.runhistory.RunHistory object at 0x7fdfb2391cd0> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040
data_loader:batch_size, Value: 64
4141
encoder:__choice__, Value: 'OneHotEncoder'
4242
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -68,7 +68,7 @@ with AutoPyTorch
6868
scaler:__choice__, Value: 'StandardScaler'
6969
trainer:StandardTrainer:weighted_loss, Value: True
7070
trainer:__choice__, Value: 'StandardTrainer'
71-
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0019197463989257812, budget=0), TrajEntry(train_perf=0.16374269005847952, incumbent_id=1, incumbent=Configuration:
71+
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.003583669662475586, budget=0), TrajEntry(train_perf=0.16374269005847952, incumbent_id=1, incumbent=Configuration:
7272
data_loader:batch_size, Value: 64
7373
encoder:__choice__, Value: 'OneHotEncoder'
7474
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -100,7 +100,7 @@ with AutoPyTorch
100100
scaler:__choice__, Value: 'StandardScaler'
101101
trainer:StandardTrainer:weighted_loss, Value: True
102102
trainer:__choice__, Value: 'StandardTrainer'
103-
, ta_runs=1, ta_time_used=5.061821699142456, wallclock_time=6.486589670181274, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=2, incumbent=Configuration:
103+
, ta_runs=1, ta_time_used=5.496156692504883, wallclock_time=7.0571489334106445, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=2, incumbent=Configuration:
104104
data_loader:batch_size, Value: 224
105105
encoder:__choice__, Value: 'OneHotEncoder'
106106
feature_preprocessor:Nystroem:kernel, Value: 'cosine'
@@ -158,7 +158,7 @@ with AutoPyTorch
158158
scaler:__choice__, Value: 'NoScaler'
159159
trainer:StandardTrainer:weighted_loss, Value: True
160160
trainer:__choice__, Value: 'StandardTrainer'
161-
, ta_runs=8, ta_time_used=74.99343538284302, wallclock_time=92.06234908103943, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=3, incumbent=Configuration:
161+
, ta_runs=8, ta_time_used=76.34314274787903, wallclock_time=94.93465065956116, budget=5.555555555555555), TrajEntry(train_perf=0.1578947368421053, incumbent_id=3, incumbent=Configuration:
162162
data_loader:batch_size, Value: 64
163163
encoder:__choice__, Value: 'OneHotEncoder'
164164
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -190,7 +190,7 @@ with AutoPyTorch
190190
scaler:__choice__, Value: 'StandardScaler'
191191
trainer:StandardTrainer:weighted_loss, Value: True
192192
trainer:__choice__, Value: 'StandardTrainer'
193-
, ta_runs=11, ta_time_used=99.09096908569336, wallclock_time=123.97066354751587, budget=16.666666666666664)]
193+
, ta_runs=11, ta_time_used=101.17933344841003, wallclock_time=128.4708001613617, budget=16.666666666666664)]
194194
{'accuracy': 0.8670520231213873}
195195
| | Preprocessing | Estimator | Weight |
196196
|---:|:------------------------------------------------------------------|:-------------------------------------------------------------------|---------:|
@@ -283,7 +283,7 @@ with AutoPyTorch
283283
284284
.. rst-class:: sphx-glr-timing
285285

286-
**Total running time of the script:** ( 6 minutes 2.932 seconds)
286+
**Total running time of the script:** ( 6 minutes 6.848 seconds)
287287

288288

289289
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py:

development/_sources/examples/20_basics/example_tabular_regression.rst.txt

Lines changed: 68 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ with AutoPyTorch
3636

3737
.. code-block:: none
3838
39-
<smac.runhistory.runhistory.RunHistory object at 0x7f3d2f654f40> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
39+
<smac.runhistory.runhistory.RunHistory object at 0x7fdfa8dea670> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
4040
data_loader:batch_size, Value: 64
4141
encoder:__choice__, Value: 'OneHotEncoder'
4242
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -67,7 +67,7 @@ with AutoPyTorch
6767
optimizer:__choice__, Value: 'AdamOptimizer'
6868
scaler:__choice__, Value: 'StandardScaler'
6969
trainer:__choice__, Value: 'StandardTrainer'
70-
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0018334388732910156, budget=0), TrajEntry(train_perf=0.37478272821074954, incumbent_id=1, incumbent=Configuration:
70+
, ta_runs=0, ta_time_used=0.0, wallclock_time=0.0019443035125732422, budget=0), TrajEntry(train_perf=0.8271799717423096, incumbent_id=1, incumbent=Configuration:
7171
data_loader:batch_size, Value: 64
7272
encoder:__choice__, Value: 'OneHotEncoder'
7373
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -98,13 +98,73 @@ with AutoPyTorch
9898
optimizer:__choice__, Value: 'AdamOptimizer'
9999
scaler:__choice__, Value: 'StandardScaler'
100100
trainer:__choice__, Value: 'StandardTrainer'
101-
, ta_runs=1, ta_time_used=4.07157826423645, wallclock_time=7.617934226989746, budget=5.555555555555555)]
102-
{'r2': 0.9199487836494068}
101+
, ta_runs=1, ta_time_used=4.774270296096802, wallclock_time=8.881023645401001, budget=5.555555555555555), TrajEntry(train_perf=0.5705056242970682, incumbent_id=2, incumbent=Configuration:
102+
data_loader:batch_size, Value: 220
103+
encoder:__choice__, Value: 'OneHotEncoder'
104+
feature_preprocessor:PowerTransformer:standardize, Value: True
105+
feature_preprocessor:__choice__, Value: 'PowerTransformer'
106+
imputer:categorical_strategy, Value: 'constant_!missing!'
107+
imputer:numerical_strategy, Value: 'median'
108+
lr_scheduler:ExponentialLR:gamma, Value: 0.7297909296891054
109+
lr_scheduler:__choice__, Value: 'ExponentialLR'
110+
network_backbone:MLPBackbone:activation, Value: 'sigmoid'
111+
network_backbone:MLPBackbone:num_groups, Value: 1
112+
network_backbone:MLPBackbone:num_units_1, Value: 53
113+
network_backbone:MLPBackbone:use_dropout, Value: False
114+
network_backbone:__choice__, Value: 'MLPBackbone'
115+
network_embedding:LearnedEntityEmbedding:dimension_reduction_0, Value: 0.49162398882471625
116+
network_embedding:LearnedEntityEmbedding:dimension_reduction_1, Value: 0.9738223543779865
117+
network_embedding:LearnedEntityEmbedding:min_unique_values_for_embedding, Value: 3
118+
network_embedding:__choice__, Value: 'LearnedEntityEmbedding'
119+
network_head:__choice__, Value: 'fully_connected'
120+
network_head:fully_connected:activation, Value: 'tanh'
121+
network_head:fully_connected:num_layers, Value: 2
122+
network_head:fully_connected:units_layer_1, Value: 84
123+
network_init:XavierInit:bias_strategy, Value: 'Normal'
124+
network_init:__choice__, Value: 'XavierInit'
125+
optimizer:SGDOptimizer:lr, Value: 0.07384606967030707
126+
optimizer:SGDOptimizer:momentum, Value: 0.41566496944512654
127+
optimizer:SGDOptimizer:weight_decay, Value: 0.002766441795903385
128+
optimizer:__choice__, Value: 'SGDOptimizer'
129+
scaler:__choice__, Value: 'MinMaxScaler'
130+
trainer:__choice__, Value: 'StandardTrainer'
131+
, ta_runs=2, ta_time_used=9.929801225662231, wallclock_time=15.717073202133179, budget=5.555555555555555), TrajEntry(train_perf=0.21935886392409365, incumbent_id=3, incumbent=Configuration:
132+
data_loader:batch_size, Value: 64
133+
encoder:__choice__, Value: 'OneHotEncoder'
134+
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
135+
imputer:categorical_strategy, Value: 'most_frequent'
136+
imputer:numerical_strategy, Value: 'mean'
137+
lr_scheduler:ReduceLROnPlateau:factor, Value: 0.1
138+
lr_scheduler:ReduceLROnPlateau:mode, Value: 'min'
139+
lr_scheduler:ReduceLROnPlateau:patience, Value: 10
140+
lr_scheduler:__choice__, Value: 'ReduceLROnPlateau'
141+
network_backbone:ShapedMLPBackbone:activation, Value: 'relu'
142+
network_backbone:ShapedMLPBackbone:max_units, Value: 200
143+
network_backbone:ShapedMLPBackbone:mlp_shape, Value: 'funnel'
144+
network_backbone:ShapedMLPBackbone:num_groups, Value: 5
145+
network_backbone:ShapedMLPBackbone:output_dim, Value: 200
146+
network_backbone:ShapedMLPBackbone:use_dropout, Value: False
147+
network_backbone:__choice__, Value: 'ShapedMLPBackbone'
148+
network_embedding:__choice__, Value: 'NoEmbedding'
149+
network_head:__choice__, Value: 'fully_connected'
150+
network_head:fully_connected:activation, Value: 'relu'
151+
network_head:fully_connected:num_layers, Value: 2
152+
network_head:fully_connected:units_layer_1, Value: 128
153+
network_init:XavierInit:bias_strategy, Value: 'Normal'
154+
network_init:__choice__, Value: 'XavierInit'
155+
optimizer:AdamOptimizer:beta1, Value: 0.9
156+
optimizer:AdamOptimizer:beta2, Value: 0.9
157+
optimizer:AdamOptimizer:lr, Value: 0.01
158+
optimizer:AdamOptimizer:weight_decay, Value: 0.0
159+
optimizer:__choice__, Value: 'AdamOptimizer'
160+
scaler:__choice__, Value: 'StandardScaler'
161+
trainer:__choice__, Value: 'StandardTrainer'
162+
, ta_runs=11, ta_time_used=64.2962703704834, wallclock_time=93.74913358688354, budget=16.666666666666664)]
163+
{'r2': 0.9189154709278342}
103164
| | Preprocessing | Estimator | Weight |
104165
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
105-
| 0 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.58 |
106-
| 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.34 |
107-
| 2 | SimpleImputer,OneHotEncoder,Normalizer,NoFeaturePreprocessing | embedding,ShapedResNetBackbone,FullyConnectedHead,nn.Sequential | 0.08 |
166+
| 0 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.64 |
167+
| 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.36 |
108168
109169
110170
@@ -190,7 +250,7 @@ with AutoPyTorch
190250
191251
.. rst-class:: sphx-glr-timing
192252

193-
**Total running time of the script:** ( 5 minutes 27.729 seconds)
253+
**Total running time of the script:** ( 5 minutes 14.190 seconds)
194254

195255

196256
.. _sphx_glr_download_examples_20_basics_example_tabular_regression.py:

development/_sources/examples/20_basics/sg_execution_times.rst.txt

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,12 @@
55

66
Computation times
77
=================
8-
**11:38.195** total execution time for **examples_20_basics** files:
8+
**11:30.678** total execution time for **examples_20_basics** files:
99

1010
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
11-
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 06:02.932 | 0.0 MB |
11+
| :ref:`sphx_glr_examples_20_basics_example_tabular_classification.py` (``example_tabular_classification.py``) | 06:06.848 | 0.0 MB |
1212
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
13-
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:27.729 | 0.0 MB |
13+
| :ref:`sphx_glr_examples_20_basics_example_tabular_regression.py` (``example_tabular_regression.py``) | 05:14.190 | 0.0 MB |
1414
+--------------------------------------------------------------------------------------------------------------+-----------+--------+
15-
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:07.534 | 0.0 MB |
15+
| :ref:`sphx_glr_examples_20_basics_example_image_classification.py` (``example_image_classification.py``) | 00:09.639 | 0.0 MB |
1616
+--------------------------------------------------------------------------------------------------------------+-----------+--------+

0 commit comments

Comments
 (0)