@@ -38,7 +38,7 @@ a 67% train size split.
38
38
39
39
.. code-block :: none
40
40
41
- <smac.runhistory.runhistory.RunHistory object at 0x7fb41aa982e0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
41
+ <smac.runhistory.runhistory.RunHistory object at 0x7f0424f56970 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
42
42
data_loader:batch_size, Value: 64
43
43
encoder:__choice__, Value: 'OneHotEncoder'
44
44
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -77,7 +77,7 @@ a 67% train size split.
77
77
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
78
78
trainer:StandardTrainer:weighted_loss, Value: True
79
79
trainer:__choice__, Value: 'StandardTrainer'
80
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.001760721206665039 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
80
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0020804405212402344 , budget=0), TrajEntry(train_perf=0.19298245614035092 , incumbent_id=1, incumbent=Configuration:
81
81
data_loader:batch_size, Value: 64
82
82
encoder:__choice__, Value: 'OneHotEncoder'
83
83
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -116,19 +116,18 @@ a 67% train size split.
116
116
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
117
117
trainer:StandardTrainer:weighted_loss, Value: True
118
118
trainer:__choice__, Value: 'StandardTrainer'
119
- , ta_runs=1, ta_time_used=14.044004440307617 , wallclock_time=15.560070037841797 , budget=5.555555555555555)]
120
- {'accuracy': 0.8728323699421965 }
119
+ , ta_runs=1, ta_time_used=14.983531713485718 , wallclock_time=16.507847785949707 , budget=5.555555555555555)]
120
+ {'accuracy': 0.8670520231213873 }
121
121
| | Preprocessing | Estimator | Weight |
122
122
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
123
- | 0 | None | CatBoostClassifier | 0.2 |
124
- | 1 | None | RFClassifier | 0.18 |
125
- | 2 | None | LGBMClassifier | 0.16 |
126
- | 3 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.14 |
127
- | 4 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.12 |
128
- | 5 | None | ExtraTreesClassifier | 0.1 |
129
- | 6 | None | KNNClassifier | 0.08 |
130
- | 7 | None | SVC | 0.02 |
131
- <smac.runhistory.runhistory.RunHistory object at 0x7fb407c61c40> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
123
+ | 0 | None | CatBoostClassifier | 0.28 |
124
+ | 1 | None | LGBMClassifier | 0.22 |
125
+ | 2 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.16 |
126
+ | 3 | None | RFClassifier | 0.12 |
127
+ | 4 | None | ExtraTreesClassifier | 0.12 |
128
+ | 5 | None | SVC | 0.08 |
129
+ | 6 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.02 |
130
+ <smac.runhistory.runhistory.RunHistory object at 0x7f0424cca160> [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
132
131
data_loader:batch_size, Value: 64
133
132
encoder:__choice__, Value: 'OneHotEncoder'
134
133
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -167,7 +166,7 @@ a 67% train size split.
167
166
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
168
167
trainer:StandardTrainer:weighted_loss, Value: True
169
168
trainer:__choice__, Value: 'StandardTrainer'
170
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0023446083068847656 , budget=0), TrajEntry(train_perf=1.0, incumbent_id=1, incumbent=Configuration:
169
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002246856689453125 , budget=0), TrajEntry(train_perf=1.0, incumbent_id=1, incumbent=Configuration:
171
170
data_loader:batch_size, Value: 64
172
171
encoder:__choice__, Value: 'OneHotEncoder'
173
172
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -206,7 +205,7 @@ a 67% train size split.
206
205
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
207
206
trainer:StandardTrainer:weighted_loss, Value: True
208
207
trainer:__choice__, Value: 'StandardTrainer'
209
- , ta_runs=1, ta_time_used=32.852065563201904 , wallclock_time=34.38716793060303 , budget=5.555555555555555)]
208
+ , ta_runs=1, ta_time_used=32.71918249130249 , wallclock_time=34.36233854293823 , budget=5.555555555555555)]
210
209
{'accuracy': 0.8728323699421965}
211
210
| | Preprocessing | Estimator | Weight |
212
211
|---:|:----------------|:------------------|---------:|
@@ -216,7 +215,7 @@ a 67% train size split.
216
215
| 3 | None | TabularClassifier | 0.16 |
217
216
| 4 | None | TabularClassifier | 0.12 |
218
217
| 5 | None | TabularClassifier | 0.06 |
219
- <smac.runhistory.runhistory.RunHistory object at 0x7fb41a4039d0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
218
+ <smac.runhistory.runhistory.RunHistory object at 0x7f0414074880 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
220
219
data_loader:batch_size, Value: 64
221
220
encoder:__choice__, Value: 'OneHotEncoder'
222
221
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -255,7 +254,7 @@ a 67% train size split.
255
254
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
256
255
trainer:StandardTrainer:weighted_loss, Value: True
257
256
trainer:__choice__, Value: 'StandardTrainer'
258
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002129077911376953 , budget=0), TrajEntry(train_perf=0.16374269005847952 , incumbent_id=1, incumbent=Configuration:
257
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.002149343490600586 , budget=0), TrajEntry(train_perf=0.16959064327485385 , incumbent_id=1, incumbent=Configuration:
259
258
data_loader:batch_size, Value: 64
260
259
encoder:__choice__, Value: 'OneHotEncoder'
261
260
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -294,18 +293,16 @@ a 67% train size split.
294
293
trainer:StandardTrainer:use_stochastic_weight_averaging, Value: True
295
294
trainer:StandardTrainer:weighted_loss, Value: True
296
295
trainer:__choice__, Value: 'StandardTrainer'
297
- , ta_runs=1, ta_time_used=15.055562496185303, wallclock_time=16.592270374298096, budget=5.555555555555555)]
298
- {'accuracy': 0.8670520231213873}
299
- | | Preprocessing | Estimator | Weight |
300
- |---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
301
- | 0 | None | RFClassifier | 0.28 |
302
- | 1 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.22 |
303
- | 2 | None | CatBoostClassifier | 0.16 |
304
- | 3 | None | KNNClassifier | 0.14 |
305
- | 4 | None | LGBMClassifier | 0.1 |
306
- | 5 | None | ExtraTreesClassifier | 0.06 |
307
- | 6 | None | SVC | 0.02 |
308
- | 7 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
296
+ , ta_runs=1, ta_time_used=15.943702936172485, wallclock_time=17.47943615913391, budget=5.555555555555555)]
297
+ {'accuracy': 0.884393063583815}
298
+ | | Preprocessing | Estimator | Weight |
299
+ |---:|:---------------------------------------------------|:-------------------------------------------------------|---------:|
300
+ | 0 | None | CatBoostClassifier | 0.66 |
301
+ | 1 | None | ExtraTreesClassifier | 0.14 |
302
+ | 2 | None | LGBMClassifier | 0.08 |
303
+ | 3 | None | RFClassifier | 0.08 |
304
+ | 4 | SimpleImputer,OneHotEncoder,Normalizer,KitchenSink | no embedding,ShapedResNetBackbone,NoHead,nn.Sequential | 0.02 |
305
+ | 5 | None | SVC | 0.02 |
309
306
310
307
311
308
@@ -469,7 +466,7 @@ a 67% train size split.
469
466
470
467
.. rst-class :: sphx-glr-timing
471
468
472
- **Total running time of the script: ** ( 10 minutes 20.331 seconds)
469
+ **Total running time of the script: ** ( 10 minutes 27.607 seconds)
473
470
474
471
475
472
.. _sphx_glr_download_advanced_tabular_example_resampling_strategy.py :
0 commit comments