Skip to content

automl-private/cRL_HPO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cRL_HPO

This is the companion repo for out EcoRL workshop Paper 'Hyperparameters in Contextual RL are Highly Situational'. For our results and insights, please check out the paper itself.

Installation

If you do not have a virtual environment, we recommend to create and activate a virtual environment (e.g. Anaconda) first. We recommend to use python 3.9 under Linux.

Then, install CARL (https://github.com/automl/CARL#installation) in your workdir:

git clone https://github.com/automl/CARL.git --recursive
cd CARL
pip install gym[box2d]
pip install -e .

Now, please clone this repo and install. Requirements: ray[tune] stable_baselines3 sb3-contrib

Re-running the Optimization

To redo our PB2 runs, call cRL_HPO/run_pb2.py with your chosen arguments. An example for Acrobot:

python cRL_HPO/run_pb2.py --name acrobot_hidden --hide_context --outdir results --env CARLAcrobotEnv --context_feature link_length_1 

Evaluating found schedules

We provide the hyperparameter schedules found in our experiments in schedules/{env_name}. To rerun them, use (e.g. for Acrobot):

python cRL_HPO/play_pb2.py --outdir evaluation_acrobot_hidden --env CARLAcrobotEnv --context_feature link_length_1 --policy_path <path_to_hp_policy> --seed <seed>

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages