This repository contains code for paper [A Study of Zero-cost proxies for Remote Sensing Image Segmentation].
- Python 3.8
- Pytorch 1.8.1
- torch-scatter
pip install torch-scatter==2.0.9 -f https://data.pyg.org/whl/torch-1.8.0+${CUDA}.html
- torch-sparse
pip install torch-sparse==0.6.10 -f https://data.pyg.org/whl/torch-1.8.0+${CUDA}.html
- torch-cluster
pip install torch-cluster==1.6.0 -f https://data.pyg.org/whl/torch-1.8.0+${CUDA}.html
- torch-spline-conv
pip install torch-spline-conv==1.2.1 -f https://data.pyg.org/whl/torch-1.8.0+${CUDA}.html
- torch-geometric
pip install torch-geometric==2.0.4
${CUDA} refers to cpu, cu101, cu102, cu111
- Ubuntu 18.04
- cuda 10.2
- cudnn 8.1.1
- See detectron2 installation instructions to install required packages.
git clone https://github.com/auroua/nas_seg_detectron2.git
python -m pip install -e nas_seg_detectron2
This project uses the WHU Building and Massachusetts road datasets.
# Train model
# As using the sync bn layer, the parameter --num-gpus must be 2
python train_net_seg.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/PSPNet/Remote-SemanticSegmentation/Base-PSPNet-OS16-Semantic.yaml --num-gpus 2 --num-machines 1
# Evaluate model
python train_net_seg.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/PSPNet/Remote-SemanticSegmentation/Base-PSPNet-OS16-Semantic.yaml --num-gpus 2 --num-machines 1 --eval-only --resume
# Train model
# As using the sync bn layer, the parameter --num-gpus must be 2
python train_net_seg.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/DeepLab/Remote-SemanticSegmentation/Base-DeepLabV3-plus-OS16-Semantic.yaml --num-gpus 2 --num-machines 1
# Evaluate model
python train_net_seg.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/DeepLab/Remote-SemanticSegmentation/Base-DeepLabV3-plus-OS16-Semantic.yaml --num-gpus 2 --num-machines 1 --eval-only --resume
export DETECTRON2_DATASETS='/home/albert_wei/fdisk_a/datasets_train_seg/'
cd nas_seg_detectron2/tools_nas
# --config_file: config file path for neural architecture search
# --gpus: using how many to finish search
# --save_dir: save search results
python train_nas_open_domain.py --config_file '/home/albert_wei/WorkSpaces/nas_seg_detectron2/configs_nas/seg/seg_101_npenas.yaml' --gpus 2 --save_dir '/home/albert_wei/fdisk_b/'
cd nas_seg_detectron2/tools_nas
# Train the searched architecture
# You have to modify the following parameters in the config-file
# SEARCHED_ARCHITECTURE: point to the searched architecture's folder, e.g., '/home/albert_wei/fdisk_a/train_output_remote/npenas_seg101_mass_road_20_epochs_2/1e4d24eb52f67424eabfe070ffbaee7ac2f31ca4f2e19a3c87680fbb4ed8167a'
# OUTPUT_DIR: point to the folder where to save the training results
python train_searched_architecture.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/Seg101/Remote-SemanticSegmentation/Base-Seg101-OS16-Semantic.yaml --num-gpus 1 --num-machines 1
# Evaluate searched architecture
python train_net_seg.py --config-file /home/albert_wei/WorkSpaces/nas_seg_detectron2/configs/Segmentation/PSPNet/Remote-SemanticSegmentation/Base-PSPNet-OS16-Semantic.yaml --num-gpus 2 --num-machines 1 --eval-only --resume
- Adding python file detectron2/data/datasets/builtin_remote to include the mass road and whu building datasets.
If you find this project useful for your research, please cite our paper:
@inproceedings{weistudy,
title={A Study of Zero-Cost Proxies for Remote Sensing Image Segmentation},
author={Wei, Chen and Guo, Tai Kai and Tang, Ping Yi and Ge, Yao Jun and Liang, Jimin},
booktitle={First Conference on Automated Machine Learning (Late-Breaking Workshop)}
}
Chen Wei
email: weichen_3@stu.xidian.edu.cn