-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
4 solvers so far: Euler, RK4, RK3/8, Heun
- Loading branch information
Showing
2 changed files
with
170 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,10 @@ | ||
# matlab-ode-solvers | ||
# ode-solvers | ||
Implementation of several popular solvers for solving ODEs in MATLAB. | ||
|
||
Collections of ODE solvers for an ODE in form of: | ||
|
||
y_dot = f(t,y) | ||
|
||
The solver then provides the solution of such an ODE in form of | ||
|
||
y = f(t,y) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
% Auralius Manurung : manurunga@yandex.com | ||
% | ||
% Collection of solvers with fixed steps | ||
% For an ODE: y_dot = f(t,y) | ||
|
||
clc | ||
clear all | ||
close all | ||
|
||
% ------ Test 1 ------ | ||
[t, ya] = euler(@myode1, 1, 0, 0.02, 0.001); | ||
[t, yb] = rk4(@myode1, 1, 0, 0.02, 0.001); | ||
[t, yc] = rk38(@myode1, 1, 0, 0.02, 0.001); | ||
[t, yd] = heun(@myode1, 1, 0, 0.02, 0.001); | ||
figure | ||
hold on | ||
plot(t, ya, 'b') | ||
plot(t, yb, 'r') | ||
plot(t, yc, 'm') | ||
plot(t, yd, 'k') | ||
legend('Euler', 'RK4', 'RK3/8', 'Heun') | ||
title('Stiff ODE, $\dot{y} = -1000y$', 'interpreter', 'latex'); | ||
|
||
% ------ Test 2 ------ | ||
[t, ya] = euler(@myode2, [1 1 1]', 0, 20, 0.001); | ||
[t, yb] = rk4(@myode2, [1 1 1]', 0, 20, 0.001); | ||
[t, yc] = rk38(@myode2, [1 1 1]', 0, 20, 0.001); | ||
[t, yd] = heun(@myode2, [1 1 1]', 0, 20, 0.001); | ||
figure | ||
hold on | ||
plot3(ya(1,:), ya(2,:), ya(3,:), 'b'); | ||
plot3(yb(1,:), yb(2,:), yb(3,:), 'r'); | ||
plot3(yc(1,:), yc(2,:), yc(3,:), 'm'); | ||
plot3(yd(1,:), yd(2,:), yd(3,:), 'k'); | ||
legend('Euler', 'RK4', 'RK3/8', 'Heun') | ||
title('Lorenz, $\sigma = 10, \beta = 8/3, \rho = 28$', 'interpreter', 'latex'); | ||
|
||
% ------ Test 3 ------ | ||
[t, ya] = euler(@myode3, [2 0]', 0, 1000, 0.001); | ||
[t, yb] = rk4(@myode3, [2 0]', 0, 1000, 0.001); | ||
[t, yc] = rk38(@myode3, [2 0]', 0, 1000, 0.001); | ||
[t, yd] = heun(@myode3, [2 0]', 0, 1000, 0.001); | ||
figure | ||
hold on | ||
plot(ya(1,:), ya(2,:), 'b'); | ||
plot(yb(1,:), yb(2,:), 'r'); | ||
plot(yc(1,:), yc(2,:), 'm'); | ||
plot(yd(1,:), yd(2,:), 'k'); | ||
legend('Euler', 'RK4', 'RK3/8', 'Heun') | ||
title('Van der Pol, $\mu = 100$', 'interpreter', 'latex'); | ||
|
||
% ------ Test 3 ------ | ||
[t, ya] = euler(@myode4, -1, 0, 10, 0.001); | ||
[t, yb] = rk4(@myode4, -1, 0, 10, 0.001); | ||
[t, yc] = rk38(@myode4, -1, 0, 10, 0.001); | ||
[t, yd] = heun(@myode4, -1, 0, 10, 0.001); | ||
figure | ||
hold on | ||
plot(t, ya, 'b'); | ||
plot(t, yb, 'r'); | ||
plot(t, yc, 'm'); | ||
plot(t, yd, 'k'); | ||
legend('Euler', 'RK4', 'RK3/8', 'Heun') | ||
title('$\dot{y} = y * sin(t)$', 'interpreter', 'latex'); | ||
|
||
% ------ ODE Example 1 ------ | ||
function ydot = myode1(t,y) | ||
ydot = -1000*y; | ||
end | ||
|
||
% ------ ODE Example 2 ------ | ||
function ydot = myode2(t,y) | ||
sigma = 10; | ||
beta = 8/3; | ||
rho = 28; | ||
ydot = [sigma * (y(2) - y(1)); | ||
y(1) * (rho - y(3)) - y(2); | ||
y(1) * y(2) - beta * y(3)]; | ||
end | ||
|
||
% ------ ODE Example 3 ------ | ||
function ydot = myode3(t,y) | ||
Mu = 100; | ||
ydot = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)]; | ||
end | ||
|
||
% ------ ODE Example 4 ------ | ||
function ydot = myode4(t,y) | ||
ydot = y*sin(t); | ||
end | ||
|
||
|
||
% ------------------------------------------------------------------------- | ||
|
||
function [t, y] = euler(odefun, y0, tstart, tfinal, dt) | ||
t = tstart:dt:tfinal; | ||
y = zeros(length(y0),length(t)); | ||
y(:,1) = y0; | ||
for k = 2 : length(t) | ||
ydot = odefun(t(k), y(:,k-1)); | ||
y(:,k) = y(:,k-1)+ydot.*dt; | ||
end | ||
end | ||
|
||
% ------------------------------------------------------------------------- | ||
|
||
function [t, y] = rk4(odefun, yn, tstart, tfinal, dt) | ||
% Based on http://www.aip.de/groups/soe/local/numres/bookcpdf/c16-1.pdf | ||
% See page 711 Equ. 16.1.3 | ||
|
||
t = tstart:dt:tfinal; | ||
y = zeros(length(yn),length(t)); | ||
y(:,1) = yn; | ||
|
||
for k = 2 : length(t) | ||
yn = y(:,k-1); | ||
tn = t(k-1); | ||
k1 = dt * odefun(tn, yn); | ||
k2 = dt * odefun(tn + dt / 2 , yn + k1 / 2); | ||
k3 = dt * odefun(tn + dt / 2, yn + k2 / 2); | ||
k4 = dt * odefun(tn + dt, yn + k3); | ||
|
||
y(:,k) = yn + k1 / 6 + k2 / 3 + k3 / 3 + k4 / 6; | ||
end | ||
end | ||
|
||
% ------------------------------------------------------------------------- | ||
|
||
function [t, y] = rk38(odefun, yn, tstart, tfinal, dt) | ||
t = tstart:dt:tfinal; | ||
y = zeros(length(yn),length(t)); | ||
y(:,1) = yn; | ||
|
||
for k = 2 : length(t) | ||
yn = y(:,k-1); | ||
tn = t(k-1); | ||
k1 = dt * odefun(tn, yn); | ||
k2 = dt * odefun(tn + dt / 3, yn + k1 / 3); | ||
k3 = dt * odefun(tn + dt * 2 / 3, yn + - k1 / 3 + k2); | ||
k4 = dt * odefun(tn + dt, yn + k1 - k2 + k3); | ||
|
||
y(:,k) = yn + 1 / 8 * k1 + 3 / 8 * k2 + 3 / 8 * k3 + 1 / 8 * k4; | ||
end | ||
end | ||
|
||
% ------------------------------------------------------------------------- | ||
|
||
function [t, y] = heun(odefun, yn, tstart, tfinal, dt) | ||
t = tstart:dt:tfinal; | ||
y = zeros(length(yn),length(t)); | ||
y(:,1) = yn; | ||
|
||
for k = 2 : length(t) | ||
yn = y(:,k-1); | ||
tn = t(k-1); | ||
k1 = dt * odefun(tn, yn); | ||
k2 = dt * odefun(tn + dt, yn + k1); | ||
|
||
y(:,k) = yn + 1 / 2 * k1 + 1 / 2 * k2; | ||
end | ||
end |