Tabbed figure manager for matplotlib using pyQt
Ever struggle to navigate between a myriad of open matplotlib figures? I know your pain...
mpl-multitab
is a simple application that allows you to embed mutliple figures
in a tabbed figure manager, keeping everything neatly in one place.
Using pip:
pip install mpl-multitab
Alternatively, clone the repo, then run the setup.py
script
git clone https://github.com/astromancer/mpl-multitab.git
cd mpl-multitab
python setup.py install
At the start of your jupyter notebook
, or ipython
session, run the line
magic to set the qt backend
%matplotlib qt5
Then
# Example use of MplTabs
# Create a scatter plot of `n` random xy-points for each colour
from mpl_multitab import MplTabs
n = 100
colours = 'rgb'
#
ui = MplTabs()
for c in colours:
fig = ui.add_tab(c)
ax = fig.subplots()
ax.scatter(*np.random.randn(2, n), color=c)
ui.set_focus(0)
ui.show()
# Example using `MplTabs` in a standalone script.
import sys
from mpl_multitab import MplTabs
n = 100
colours = 'rgb'
app = QtWidgets.QApplication(sys.argv)
ui = MplTabs()
for c in colours:
fig = ui.add_tab(c)
ax = fig.subplots()
ax.scatter(*np.random.randn(2, n), color=c)
ui.set_focus(0)
ui.show()
sys.exit(app.exec_())
You can group multiple related figures together using the MplMultiTab
class.
This is useful for visualising, for example, multiple datasets each having
multiple observations.
# Example use for MplMultiTab for 2d collection of data sets
# This dataset is equal number observations per dataset. This need not be the
# case in general.
import itertools as itt
from mpl_multitab import MplMultiTab
n = 100
colours = 'rgb'
markers = '123'
#
ui = MplMultiTab(pos='W')
for c, m in itt.product(colours, markers):
fig = ui.add_tab(f'Dataset {c.upper()}', f'Observation {m}')
ax = fig.subplots()
ax.scatter(*np.random.randn(2, n), color=c, marker=f'${m}$')
ui.set_focus(0, 0)
ui.link_focus()
ui.show()
In this example all the datasets contain the same number of obervations, but this need not be the case in general.
Creating all the figures in one go at startup may take unreasonably long if you have many figures or lots of data. This can be amortised by delaying the plotting of individual figures until the user switches to that tab. This is demonstrated in the following example:
# MplMultiTab with delayed plotting
import itertools as itt
from mpl_multitab import MplMultiTab
n = 10000
colours = 'rgb'
markers = '123'
#
# first create the figures, but don't do the plotting just yet
ui = MplMultiTab(pos='W')
for c, m in itt.product(colours, markers):
ui.add_tab(f'Dataset {c.upper()}', f'Observation {m}')
# create plotting function
def plot(fig, indices):
print('Doing plot:', indices)
i, j = indices
ax = fig.subplots()
return ax.scatter(*np.random.randn(2, n),
color=colours[i],
marker=f'${markers[j]}$')
ui.add_task(plot) # add your plot worker
ui.set_focus(0, 0) # this will trigger the plotting for group 0 tab 0
ui.link_focus() # keep same tab in focus across group switches
ui.show()
The MplMultiTab
class is able to handle nested tabs to any depth. The
following example demonstrates the usage pattern for datasets grouped by 3
different features. The same pattern can be used to handle data of any
dimensionality. Tabs all the way down!
# MplMultiTab with 3 tab levels
import itertools as itt
from mpl_multitab import MplMultiTab
n = 10
colours = 'rgb'
markers = 'H*P'
hatch = ('xx', '**')
#
ui = MplMultiTab()
for c, m, h in itt.product(colours, markers, hatch):
# use "&" to tag letters for keyboard shortcuts which select the tab
# eg: using "&x" somewhere in the tab name means you can select it with "Alt+x"
fig = ui.add_tab(f'Colour &{c.upper()}', f'Marker &{m}', f'Hatch &{h}')
ax = fig.subplots()
ax.scatter(*np.random.randn(2, n),
s=750, marker=m, hatch=h,
edgecolor=c, facecolor='none')
ui.link_focus() # keep same tab in focus across group switches
ui.set_focus(0, 0, 0)
ui.show()
Testing is done with pytest-qt. This will run through all examples in the examples module:
pytest -vs tests/test_multitab.py
Contributions are welcome!
- Fork it!
- Create your feature branch
git checkout -b feature/rad
- Commit your changes
git commit -am 'Add some cool feature 😎'
- Push to the branch
git push origin feature/rad
- Create a new Pull Request
- e-mail: hannes@saao.ac.za
- see LICENSE
This project uses semantic versioning. The latest version is
- 1.2.0