Real-Time Object Detection using Arduino Uno and Edge Impulse with TinyML
You can find the public version of the project here: Edge Impulse Project Link
This project demonstrates real-time object detection using an IR Object Sensor with Arduino Uno, leveraging Edge Impulse for data collection, model training, and deployment using TinyML. The model is deployed on Arduino for on-device inference.
- Arduino Uno
- IR Object Sensor
- USB Cable (for connecting Arduino to a computer)
- Computer (macOS or Windows for model training and deployment)
-
Source Code & Models
Arduino_Code/object_detection.ino→ Arduino program for object detection- Edge Impulse Project Link
-
Documentation & Data
- TinyML projectL.pdf` → Project documentation
-
Download and install Arduino IDE → Download Here
-
Install Edge Impulse CLI (for data collection and model training):
npm install -g edge-impulse-cli
-
Connect the IR Sensor to Arduino Uno using appropriate GPIO pins.
-
Open the
Arduino_Code/object_detection.inofile in Arduino IDE. -
Upload the code to Arduino Uno.
- Use Edge Impulse Studio to collect sensor data.
- Train a TinyML model and export it as a
.tflitefile. - Deploy the trained model back to the Arduino Uno.

