Skip to content

ashenoy95/mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MCP Chat

MCP Chat is a command-line interface application that enables interactive chat capabilities with AI models through the Anthropic API. The application supports document retrieval, command-based prompts, and extensible tool integrations via the MCP (Model Control Protocol) architecture.

⚠️ Note
This repo's code is from Anthropic Academy's MCP Course

Prerequisites

  • Python 3.9+
  • Anthropic API Key

Setup

Step 1: Configure the environment variables

  1. Create or edit the .env file in the project root and verify that the following variables are set correctly:
ANTHROPIC_API_KEY=""  # Enter your Anthropic API secret key

Step 2: Install dependencies

Option 1: Setup with uv (Recommended)

uv is a fast Python package installer and resolver.

  1. Install uv, if not already installed:
pip install uv
  1. Create and activate a virtual environment:
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  1. Install dependencies:
uv pip install -e .
  1. Run the project
uv run main.py

Option 2: Setup without uv

  1. Create and activate a virtual environment:
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
  1. Install dependencies:
pip install anthropic python-dotenv prompt-toolkit "mcp[cli]==1.8.0"
  1. Run the project
python main.py

Usage

Basic Interaction

Simply type your message and press Enter to chat with the model.

Document Retrieval

Use the @ symbol followed by a document ID to include document content in your query:

> Tell me about @deposition.md

Commands

Use the / prefix to execute commands defined in the MCP server:

> /summarize deposition.md

Commands will auto-complete when you press Tab.

Development

Adding New Documents

Edit the mcp_server.py file to add new documents to the docs dictionary.

Implementing MCP Features

To fully implement the MCP features:

  1. Complete the TODOs in mcp_server.py
  2. Implement the missing functionality in mcp_client.py

Linting and Typing Check

There are no lint or type checks implemented.

About

MCP Chat Demo

Topics

Resources

Stars

Watchers

Forks

Languages