forked from agudelo816/Object-Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
asdf123yj/Object-Recognition
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
*Used code from PyImageSearch and OpenCV’s tutorials* Requirements: OpenCV 2.4.13, Python 2.7 1) Open the Python project folder "ObjectRecognition" in PyCharm IDE 2) Open "main.py" 3) Run "main.py" Results will print in this format for each query image: Query: "Query Image name" Test: "Flann" Ranking: 1: Best match 2: 2nd best match 3: 3rd best match 4: 4th best match Test: "Histogram" Ranking: 1: Best match 2: 2nd best match 3: 3rd best match 4: 4th best match Test: "Template" Ranking: 1: Best match 2: 2nd best match 3: 3rd best match 4: 4th best match Test: "Sift" Ranking: 1: Best match 2: 2nd best match 3: 3rd best match 4: 4th best match Results will print in this format for each method used (e.g Flann ) "Method name": queries= x matches= y mean= z Query Image: "Query image 1 name" Score = (0-4) ... and so on for each query image standard deviation= some value e.g Flann Flann: queries= 20 matches= 76 mean= 3.8 Query Image: ukbench00020.jpg Score= 4 Query Image: ukbench00021.jpg Score= 4 Query Image: ukbench00022.jpg Score= 4 Query Image: ukbench00023.jpg Score= 3 Query Image: ukbench00284.jpg Score= 3 Query Image: ukbench00285.jpg Score= 3 Query Image: ukbench00286.jpg Score= 4 Query Image: ukbench00287.jpg Score= 3 Query Image: ukbench00720.jpg Score= 4 Query Image: ukbench00721.jpg Score= 4 Query Image: ukbench00722.jpg Score= 4 Query Image: ukbench00723.jpg Score= 4 Query Image: ukbench01492.jpg Score= 4 Query Image: ukbench01493.jpg Score= 4 Query Image: ukbench01494.jpg Score= 4 Query Image: ukbench01495.jpg Score= 4 Query Image: ukbench09120.jpg Score= 4 Query Image: ukbench09121.jpg Score= 4 Query Image: ukbench09122.jpg Score= 4 Query Image: ukbench09123.jpg Score= 4 standard deviation= 0.4
About
Compares images within a dataset and ranks the 4 best matches using SIFT, FLANN, Template Matching, and Color-Histogram Matching
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 100.0%