Skip to content

Conversation

@VincentAuriau
Copy link
Collaborator

No description provided.

@gemini-code-assist
Copy link
Contributor

Summary of Changes

Hello @VincentAuriau, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request introduces a significant enhancement to the ChoiceDataset's from_single_wide_df method, improving its parametrization for handling wide-format DataFrames. By consolidating multiple parameters for identifying item-specific features and availabilities into a more flexible pattern-based system, the API becomes cleaner and more intuitive. This change simplifies the process of converting DataFrames into ChoiceDataset objects, making it easier for users to define complex column structures.

Highlights

  • Simplified API for from_single_wide_df: The from_single_wide_df method now uses items_features_patterns and available_items_pattern parameters, replacing the previous _suffixes, _prefixes, and delimiter parameters. This streamlines how item-specific columns are identified using a wildcard * in patterns.
  • Improved Flexibility: The new pattern-based approach allows for more flexible column naming conventions (e.g., prefix* or *_suffix) without needing separate parameters for prefixes and suffixes.
  • Documentation and Example Updates: All relevant dataset loading functions and Jupyter notebooks have been updated to reflect the new API, ensuring consistency and providing clear examples of the new parametrization.

🧠 New Feature in Public Preview: You can now enable Memory to help Gemini Code Assist learn from your team's feedback. This makes future code reviews more consistent and personalized to your project's style. Click here to enable Memory in your admin console.

Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point by creating a comment using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands on the current page.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in pull request comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request refactors the creation of a ChoiceDataset from a wide DataFrame by replacing prefix/suffix-based parameters with a more flexible pattern-based approach. This is a good enhancement that simplifies the API. My review identifies a few critical issues, including a potential NameError due to an undefined variable and a TypeError from an extra parameter being passed. I've also suggested improvements to input validation by using ValueError instead of assert.

if items_features_patterns is not None:
assert all(["*" in pattern for pattern in items_features_patterns]), (
"items_features_patterns should all contain '*' character."
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

The variable items_features_names is not defined within the if items_features_patterns is not None: block. This will cause a NameError at line 981 when ChoiceDataset is constructed. This appears to be a regression from the previous implementation which correctly set the feature names. You should derive items_features_names from items_features_patterns.

For example, you could add the following line before this one:
items_features_names = [p.strip("*_.") for p in items_features_patterns]

Comment on lines 1205 to 1208
items_id=items,
shared_features_columns=shared_features_by_choice_names,
items_features_suffixes=items_features_by_choice_names,
items_features_patterns=["*_%s" % s for s in items_features_by_choice_names],
delimiter="_",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

critical

The delimiter parameter is no longer accepted by from_single_wide_df after your changes. This will cause a TypeError. Please remove it.

Suggested change
items_id=items,
shared_features_columns=shared_features_by_choice_names,
items_features_suffixes=items_features_by_choice_names,
items_features_patterns=["*_%s" % s for s in items_features_by_choice_names],
delimiter="_",
items_features_patterns=["*_%s" % s for s in items_features_by_choice_names],
choices_column=choice_column,
choice_format="items_index",

Comment on lines 932 to 933
assert all(["*" in pattern for pattern in items_features_patterns]), (
"items_features_patterns should all contain '*' character."
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

Using assert for input validation is not recommended as assertions can be disabled (e.g., with Python's -O flag), which would bypass this check. It's better to raise a ValueError for invalid user input.

Suggested change
assert all(["*" in pattern for pattern in items_features_patterns]), (
"items_features_patterns should all contain '*' character."
if not all("*" in pattern for pattern in items_features_patterns):
raise ValueError("items_features_patterns should all contain '*' character.")

Comment on lines 961 to 962
else:
columns = [f"{item}{delimiter}{available_items_suffix}" for item in items_id]
available_items_by_choice = df[columns].to_numpy()
elif available_items_prefix is not None:
if isinstance(available_items_prefix, list):
if not len(available_items_prefix) == len(items_id):
raise ValueError(
"You have given a list of columns for availabilities."
"We consider that it is one for each item however lenghts do not match"
)
logging.info("You have given a list of columns for availabilities.")
logging.info("Each column will be matched to an item, given their order")
available_items_by_choice = df[available_items_prefix].to_numpy()
else:
columns = [f"{available_items_prefix}{delimiter}{item}" for item in items_id]
assert "*" in available_items_pattern, (
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

Using assert for input validation is not recommended as assertions can be disabled (e.g., with Python's -O flag). It's better to raise a ValueError for invalid user input.

Suggested change
else:
columns = [f"{item}{delimiter}{available_items_suffix}" for item in items_id]
available_items_by_choice = df[columns].to_numpy()
elif available_items_prefix is not None:
if isinstance(available_items_prefix, list):
if not len(available_items_prefix) == len(items_id):
raise ValueError(
"You have given a list of columns for availabilities."
"We consider that it is one for each item however lenghts do not match"
)
logging.info("You have given a list of columns for availabilities.")
logging.info("Each column will be matched to an item, given their order")
available_items_by_choice = df[available_items_prefix].to_numpy()
else:
columns = [f"{available_items_prefix}{delimiter}{item}" for item in items_id]
assert "*" in available_items_pattern, (
if "*" not in available_items_pattern:
raise ValueError("available_items_pattern should contain '*' character.")

@github-actions
Copy link
Contributor

github-actions bot commented Jan 29, 2026

Coverage

Coverage Report for Python 3.9
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–830, 891–894, 934–935
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6314693%199, 251, 284, 422, 464–465, 590, 725, 739, 841, 843, 929, 940, 957–958, 963–970, 974–981, 984, 994, 998, 1106, 1125–1127, 1145–1147, 1175, 1180, 1189, 1206, 1247, 1259, 1273, 1312, 1327, 1332, 1361, 1374, 1409–1410
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py406599%42–43, 153–154, 720
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3353590%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735, 935, 939–953
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2362360%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL563286485% 

Tests Skipped Failures Errors Time
222 0 💤 0 ❌ 0 🔥 6m 30s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Jan 29, 2026

Coverage

Coverage Report for Python 3.10
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–830, 891–894, 934–935
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6314693%199, 251, 284, 422, 464–465, 590, 725, 739, 841, 843, 929, 940, 957–958, 963–970, 974–981, 984, 994, 998, 1106, 1125–1127, 1145–1147, 1175, 1180, 1189, 1206, 1247, 1259, 1273, 1312, 1327, 1332, 1361, 1374, 1409–1410
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py406599%42–43, 153–154, 720
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3353590%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735, 935, 939–953
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL563486685% 

Tests Skipped Failures Errors Time
222 0 💤 0 ❌ 0 🔥 6m 26s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Jan 29, 2026

Coverage

Coverage Report for Python 3.11
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–830, 891–894, 934–935
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 51, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6314693%199, 251, 284, 422, 464–465, 590, 725, 739, 841, 843, 929, 940, 957–958, 963–970, 974–981, 984, 994, 998, 1106, 1125–1127, 1145–1147, 1175, 1180, 1189, 1206, 1247, 1259, 1273, 1312, 1327, 1332, 1361, 1374, 1409–1410
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py406599%42–43, 153–154, 720
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3353590%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735, 935, 939–953
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL563486685% 

Tests Skipped Failures Errors Time
222 0 💤 0 ❌ 0 🔥 7m 2s ⏱️

@github-actions
Copy link
Contributor

github-actions bot commented Jan 29, 2026

Coverage

Coverage Report for Python 3.12
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py62198%283
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py1482285%86–90, 92–96, 98–102, 106, 109, 131, 159, 308, 431–455
   base_basket_model.py2352789%111–112, 123, 141, 185, 255, 377, 485, 585–587, 676, 762, 772, 822–830, 891–894, 934–935
   basic_attention_model.py89496%424, 427, 433, 440
   self_attention_model.py133993%71, 73, 75, 450–454, 651
   shopper.py184995%130, 159, 325, 345, 360, 363, 377, 489, 618
choice_learn/basket_models/data
   __init__.py20100% 
   basket_dataset.py1903084%74–77, 295–297, 407, 540–576, 636, 658–661, 700–705, 790–801, 849
   preprocessing.py947817%43–45, 128–364
choice_learn/basket_models/datasets
   __init__.py30100% 
   bakery.py38392%47, 53, 61
   synthetic_dataset.py81693%62, 194–199, 247
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6314693%199, 251, 284, 422, 464–465, 590, 725, 739, 841, 843, 929, 940, 957–958, 963–970, 974–981, 984, 994, 998, 1106, 1125–1127, 1145–1147, 1175, 1180, 1189, 1206, 1247, 1259, 1273, 1312, 1327, 1332, 1361, 1374, 1409–1410
   indexer.py2412390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 582
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py406599%42–43, 153–154, 720
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py3353590%145, 187, 289, 297, 303, 312, 352, 356–357, 362, 391, 395–396, 413, 426, 434, 475–476, 485–486, 587, 589, 605, 609, 611, 734–735, 935, 939–953
   baseline_models.py490100% 
   conditional_logit.py2692690%49, 52, 54, 85, 88, 91–95, 98–102, 136, 206, 212–216, 351, 388, 445, 520–526, 651, 685, 822, 826
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
choice_learn/utils
   metrics.py854349%74, 126–130, 147–166, 176, 190–199, 211–232, 242
TOTAL563486685% 

Tests Skipped Failures Errors Time
222 0 💤 0 ❌ 0 🔥 7m 57s ⏱️

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants