29
29
"name" : " stdout" ,
30
30
"output_type" : " stream" ,
31
31
"text" : [
32
- " Extracting /tmp/data /train-images-idx3-ubyte.gz\n " ,
33
- " Extracting /tmp/data /train-labels-idx1-ubyte.gz\n " ,
34
- " Extracting /tmp/data /t10k-images-idx3-ubyte.gz\n " ,
35
- " Extracting /tmp/data /t10k-labels-idx1-ubyte.gz\n "
32
+ " Extracting MNIST_data /train-images-idx3-ubyte.gz\n " ,
33
+ " Extracting MNIST_data /train-labels-idx1-ubyte.gz\n " ,
34
+ " Extracting MNIST_data /t10k-images-idx3-ubyte.gz\n " ,
35
+ " Extracting MNIST_data /t10k-labels-idx1-ubyte.gz\n "
36
36
]
37
37
}
38
38
],
39
39
"source" : [
40
40
" # Import MINST data\n " ,
41
41
" from tensorflow.examples.tutorials.mnist import input_data\n " ,
42
- " mnist = input_data.read_data_sets(\" /tmp/data /\" , one_hot=True)\n " ,
42
+ " mnist = input_data.read_data_sets(\" MNIST_data /\" , one_hot=True)\n " ,
43
43
" \n " ,
44
44
" import tensorflow as tf"
45
45
]
46
46
},
47
47
{
48
48
"cell_type" : " code" ,
49
- "execution_count" : 2 ,
49
+ "execution_count" : 3 ,
50
50
"metadata" : {
51
- "collapsed" : true
51
+ "collapsed" : false
52
52
},
53
53
"outputs" : [],
54
54
"source" : [
97
97
" pred = multilayer_perceptron(x, weights, biases)\n " ,
98
98
" \n " ,
99
99
" # Define loss and optimizer\n " ,
100
- " cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n " ,
100
+ " cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits= pred, labels= y))\n " ,
101
101
" optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n " ,
102
102
" \n " ,
103
103
" # Initializing the variables\n " ,
104
- " init = tf.initialize_all_variables ()"
104
+ " init = tf.global_variables_initializer ()"
105
105
]
106
106
},
107
107
{
108
108
"cell_type" : " code" ,
109
- "execution_count" : 3 ,
109
+ "execution_count" : 4 ,
110
110
"metadata" : {
111
111
"collapsed" : true
112
112
},
118
118
},
119
119
{
120
120
"cell_type" : " code" ,
121
- "execution_count" : 4 ,
121
+ "execution_count" : 5 ,
122
122
"metadata" : {
123
123
"collapsed" : false
124
124
},
128
128
"output_type" : " stream" ,
129
129
"text" : [
130
130
" Starting 1st session...\n " ,
131
- " Epoch: 0001 cost= 182.770135574 \n " ,
132
- " Epoch: 0002 cost= 44.863718596 \n " ,
133
- " Epoch: 0003 cost= 27.965412349 \n " ,
131
+ " Epoch: 0001 cost= 187.778896380 \n " ,
132
+ " Epoch: 0002 cost= 42.367902536 \n " ,
133
+ " Epoch: 0003 cost= 26.488964058 \n " ,
134
134
" First Optimization Finished!\n " ,
135
- " Accuracy: 0.906 \n " ,
135
+ " Accuracy: 0.9075 \n " ,
136
136
" Model saved in file: /tmp/model.ckpt\n "
137
137
]
138
138
}
175
175
},
176
176
{
177
177
"cell_type" : " code" ,
178
- "execution_count" : 5 ,
178
+ "execution_count" : 6 ,
179
179
"metadata" : {
180
180
"collapsed" : false
181
181
},
186
186
"text" : [
187
187
" Starting 2nd session...\n " ,
188
188
" Model restored from file: /tmp/model.ckpt\n " ,
189
- " Epoch: 0001 cost= 19.658836002 \n " ,
190
- " Epoch: 0002 cost= 14.354811554 \n " ,
191
- " Epoch: 0003 cost= 10.580801367 \n " ,
192
- " Epoch: 0004 cost= 8.012172253 \n " ,
193
- " Epoch: 0005 cost= 5.985675981 \n " ,
194
- " Epoch: 0006 cost= 4.572637980 \n " ,
195
- " Epoch: 0007 cost= 3.329074899 \n " ,
189
+ " Epoch: 0001 cost= 18.292712951 \n " ,
190
+ " Epoch: 0002 cost= 13.404136196 \n " ,
191
+ " Epoch: 0003 cost= 9.855191723 \n " ,
192
+ " Epoch: 0004 cost= 7.276933088 \n " ,
193
+ " Epoch: 0005 cost= 5.564581285 \n " ,
194
+ " Epoch: 0006 cost= 4.165259939 \n " ,
195
+ " Epoch: 0007 cost= 3.139393926 \n " ,
196
196
" Second Optimization Finished!\n " ,
197
- " Accuracy: 0.9371 \n "
197
+ " Accuracy: 0.9385 \n "
198
198
]
199
199
}
200
200
],
242
242
"collapsed" : true
243
243
},
244
244
"outputs" : [],
245
- "source" : [
246
- " "
247
- ]
245
+ "source" : []
248
246
}
249
247
],
250
248
"metadata" : {
256
254
"language_info" : {
257
255
"codemirror_mode" : {
258
256
"name" : " ipython" ,
259
- "version" : 2.0
257
+ "version" : 2
260
258
},
261
259
"file_extension" : " .py" ,
262
260
"mimetype" : " text/x-python" ,
263
261
"name" : " python" ,
264
262
"nbconvert_exporter" : " python" ,
265
263
"pygments_lexer" : " ipython2" ,
266
- "version" : " 2.7.11 "
264
+ "version" : " 2.7.13 "
267
265
}
268
266
},
269
267
"nbformat" : 4 ,
270
268
"nbformat_minor" : 0
271
- }
269
+ }
0 commit comments