Skip to content

Commit 2c43cfb

Browse files
Refactor tensorboard_advanced for TF1.0
Signed-off-by: Norman Heckscher <norman.heckscher@gmail.com>
1 parent 5b9aef4 commit 2c43cfb

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

examples/4_Utils/tensorboard_advanced.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -41,12 +41,12 @@ def multilayer_perceptron(x, weights, biases):
4141
layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
4242
layer_1 = tf.nn.relu(layer_1)
4343
# Create a summary to visualize the first layer ReLU activation
44-
tf.histogram_summary("relu1", layer_1)
44+
tf.summary.histogram("relu1", layer_1)
4545
# Hidden layer with RELU activation
4646
layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
4747
layer_2 = tf.nn.relu(layer_2)
4848
# Create another summary to visualize the second layer ReLU activation
49-
tf.histogram_summary("relu2", layer_2)
49+
tf.summary.histogram("relu2", layer_2)
5050
# Output layer
5151
out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
5252
return out_layer
@@ -91,24 +91,24 @@ def multilayer_perceptron(x, weights, biases):
9191
init = tf.initialize_all_variables()
9292

9393
# Create a summary to monitor cost tensor
94-
tf.scalar_summary("loss", loss)
94+
tf.summary.scalar("loss", loss)
9595
# Create a summary to monitor accuracy tensor
96-
tf.scalar_summary("accuracy", acc)
96+
tf.summary.scalar("accuracy", acc)
9797
# Create summaries to visualize weights
9898
for var in tf.trainable_variables():
99-
tf.histogram_summary(var.name, var)
99+
tf.summary.histogram(var.name, var)
100100
# Summarize all gradients
101101
for grad, var in grads:
102-
tf.histogram_summary(var.name + '/gradient', grad)
102+
tf.summary.histogram(var.name + '/gradient', grad)
103103
# Merge all summaries into a single op
104-
merged_summary_op = tf.merge_all_summaries()
104+
merged_summary_op = tf.summary.merge_all()
105105

106106
# Launch the graph
107107
with tf.Session() as sess:
108108
sess.run(init)
109109

110110
# op to write logs to Tensorboard
111-
summary_writer = tf.train.SummaryWriter(logs_path,
111+
summary_writer = tf.summary.FileWriter(logs_path,
112112
graph=tf.get_default_graph())
113113

114114
# Training cycle

0 commit comments

Comments
 (0)