Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

定期合并 - Dev #471

Merged
merged 9 commits into from
Dec 4, 2018
17 changes: 11 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -129,15 +129,15 @@
<td>机器学习实战</td>
<td><a href="blog/ml/15.大数据与MapReduce.md">第 15 章: 大数据与 MapReduce</a></td>
<td>工具</td>
<td>空缺 - 有兴趣私聊片刻</td>
<td>529815144</td>
<td>wnma3mz</td>
<td>1003324213</td>
</tr>
<tr>
<td>Ml项目实战</td>
<td><a href="blog/ml/16.推荐系统.md">第 16 章: 推荐系统</a></td>
<td><a href="blog/ml/16.推荐系统.md">第 16 章: 推荐系统(已迁移)</a></td>
<td>项目</td>
<td>空缺 - 有兴趣私聊片刻</td>
<td>529815144</td>
<td><a href="https://github.com/apachecn/RecommenderSystems">推荐系统 <--(迁移后地址)</a></td>
<td></td>
</tr>
<tr>
<td>第一期的总结</td>
Expand Down Expand Up @@ -190,7 +190,7 @@
2)国外就不举例了,我看不懂!
3. 开源的框架
1)国外的开源框架: tensorflow/pytorch 文档+教程+视频(官方提供)
2) 国内的开源框架: 额额,还真举例不出来!但是牛逼吹得不比国外差!(好像 MXNet 是沐神弄的?? 文档+教程+视频)
2) 国内的开源框架: 额额,还真举例不出来!但是牛逼吹得不比国外差!(好像 MXNet 教学资料 是沐神弄的?? 文档+教程+视频)
每一次深入都要去翻墙,每一次深入都要Google,每一次看着国内的说:哈工大、讯飞、中科大、百度、阿里 多牛逼,但是资料还是得国外去找!
有时候真的挺狠的!真的有点瞧不起自己国内的技术环境!

Expand Down Expand Up @@ -473,6 +473,11 @@ mage字幕是为给定图像生成文本描述的任务。
* [古柳-DesertsX]()
* [woodchuck]()
* [自由精灵]()
* [楚盟]()
* [99杆清台]()
* [时空守望者@]()
* [只想发论文的渣渣]()
* [目标: ml劝退专家]()

**欢迎贡献者不断的追加**

Expand Down
2 changes: 1 addition & 1 deletion src/py3.x/ml/12.FrequentPattemTree/fpGrowth.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,7 +219,7 @@ def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
"""
# 通过value进行从小到大的排序, 得到频繁项集的key
# 最小支持项集的key的list集合
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1][0])]
print('-----', sorted(headerTable.items(), key=lambda p: p[1][0]))
print('bigL=', bigL)
# 循环遍历 最频繁项集的key,从小到大的递归寻找对应的频繁项集
Expand Down