Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch] Add aten::roll support for Swin Transformer #9371

Merged
merged 9 commits into from
Oct 26, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 58 additions & 20 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -849,35 +849,23 @@ def hard_swish(self, inputs, input_types):
data = inputs[0]
return data * self.hard_sigmoid(inputs, input_types)

def adaptive_avg_pool_2d(self, inputs, input_types):
def adaptive_avg_pool(self, op, inputs, input_types):
data = inputs[0]
output_size = inputs[1]

def func(x):
return _op.nn.adaptive_avg_pool2d(x, output_size=output_size)
return op(x, output_size=output_size)

if self.is_quantized_tensor(data):
return qnn_torch.apply_with_upcast(data, func)

return func(data)

def adaptive_max_pool_2d(self, inputs, input_types):
def adaptive_max_pool(self, op, inputs, input_types):
data = inputs[0]
output_size = inputs[1]

# returns dummy indices too
return _op.nn.adaptive_max_pool2d(data, output_size=output_size), None

def adaptive_max_pool_3d(self, inputs, input_types):
data = inputs[0]
output_size = inputs[1]
# returns dummy indices too
return _op.nn.adaptive_max_pool3d(data, output_size=output_size), None

def adaptive_avg_pool_3d(self, inputs, input_types):
data = inputs[0]
output_size = inputs[1]
return _op.nn.adaptive_avg_pool3d(data, output_size=output_size)
return op(data, output_size=output_size), None

@staticmethod
def convert_const_list(data):
Expand Down Expand Up @@ -2794,6 +2782,39 @@ def searchsorted(self, inputs, input_types):
def bucketize(self, inputs, input_types):
return self.searchsorted_common(inputs[1], inputs[0], inputs[2], inputs[3])

def roll(self, inputs, input_types):
def slide_axes(inp, shape, ax):
axes = list(range(len(shape)))
axes = axes[:ax] + [-1] + axes[ax:-1]
return _op.transpose(inp, axes)

x = inputs[0]
shifts = inputs[1]
dims = inputs[2]
shape = self.infer_shape(x)
start = _expr.const(0, "int64")
step = _expr.const(1, "int64")

out = x
for i, dim in enumerate(dims):
roll_dim = _expr.const(shape[dim], "int64")
indices_1d = _op.mod(
_op.transform.arange(start, roll_dim, step, "int64")
- _expr.const(shifts[i], "int64")
+ roll_dim,
roll_dim,
)
# First fill in the last axis with roll indices, and then do transpose to
# bring the roll indices into the desired axis.
indices = slide_axes(
_op.tile(indices_1d, shape[:dim] + shape[dim + 1 :] + (1,)),
shape,
dim,
)
out = _op.gather(out, dim, indices)

return out

# Operator mappings
def create_convert_map(self):
self.convert_map = {
Expand Down Expand Up @@ -2851,9 +2872,26 @@ def create_convert_map(self):
"aten::gelu": self.gelu,
"aten::selu": self.selu,
"aten::silu": self.silu,
"aten::silu_": self.silu,
"aten::log_sigmoid": self.log_sigmoid,
"aten::adaptive_avg_pool2d": self.adaptive_avg_pool_2d,
"aten::adaptive_max_pool2d": self.adaptive_max_pool_2d,
"aten::adaptive_avg_pool1d": functools.partial(
self.adaptive_avg_pool, _op.nn.adaptive_avg_pool1d
),
"aten::adaptive_avg_pool2d": functools.partial(
self.adaptive_avg_pool, _op.nn.adaptive_avg_pool2d
),
"aten::adaptive_avg_pool3d": functools.partial(
self.adaptive_avg_pool, _op.nn.adaptive_avg_pool3d
),
"aten::adaptive_max_pool1d": functools.partial(
self.adaptive_max_pool, _op.nn.adaptive_max_pool1d
),
"aten::adaptive_max_pool2d": functools.partial(
self.adaptive_max_pool, _op.nn.adaptive_max_pool2d
),
"aten::adaptive_max_pool3d": functools.partial(
self.adaptive_max_pool, _op.nn.adaptive_max_pool3d
),
"aten::max_pool2d": self.maxpool_2d,
"aten::max_pool2d_with_indices": self.maxpool_2d_with_indices,
"aten::max_pool1d": self.maxpool_1d,
Expand Down Expand Up @@ -2939,6 +2977,7 @@ def create_convert_map(self):
"aten::rsqrt": self.make_unary("rsqrt"),
"aten::ceil": self.make_unary("ceil"),
"aten::floor": self.make_unary("floor"),
"aten::floor_": self.make_unary("floor"),
"aten::round": self.make_unary("round"),
"aten::isfinite": self.make_unary("isfinite"),
"aten::isinf": self.make_unary("isinf"),
Expand All @@ -2964,8 +3003,6 @@ def create_convert_map(self):
"aten::bitwise_xor": self.bitwise_xor,
"aten::Bool": self.Bool,
"aten::Float": self.Float,
"aten::adaptive_avg_pool3d": self.adaptive_avg_pool_3d,
"aten::adaptive_max_pool3d": self.adaptive_max_pool_3d,
"aten::rsub": self.rsub,
"aten::embedding": self.embedding,
"aten::one_hot": self.one_hot,
Expand Down Expand Up @@ -3021,6 +3058,7 @@ def create_convert_map(self):
"aten::any": functools.partial(self.all_any_common, _op.any),
"aten::searchsorted": self.searchsorted,
"aten::bucketize": self.bucketize,
"aten::roll": self.roll,
}

def update_convert_map(self, custom_map):
Expand Down
30 changes: 29 additions & 1 deletion tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -735,13 +735,30 @@ def test_forward_log_sigmoid():


@tvm.testing.uses_gpu
def test_forward_adaptiveavgpool():
def test_forward_adaptive_avgpool():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AdaptiveAvgPool2d([1, 1]).eval(), input_data=input_data)
verify_model(torch.nn.AdaptiveAvgPool2d([10, 10]).eval(), input_data=input_data)

input_data = torch.rand([1, 3, 10]).float()
verify_model(torch.nn.AdaptiveAvgPool1d([1]).eval(), input_data=input_data)
verify_model(torch.nn.AdaptiveAvgPool1d([5]).eval(), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_adaptive_maxpool():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AdaptiveMaxPool2d([1, 1]).eval(), input_data=input_data)
verify_model(torch.nn.AdaptiveMaxPool2d([10, 10]).eval(), input_data=input_data)

input_data = torch.rand([1, 3, 10]).float()
verify_model(torch.nn.AdaptiveMaxPool1d([1]).eval(), input_data=input_data)
verify_model(torch.nn.AdaptiveMaxPool1d([5]).eval(), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_maxpool2d():
Expand Down Expand Up @@ -3992,5 +4009,16 @@ def test_fn(out_int32=False, right=False):
verify_model(test_fn(out_int32=True, right=True), [values, boundaries])


@tvm.testing.uses_gpu
def test_roll():
def test_fn(shifts, dims):
return lambda x: torch.roll(x, shifts, dims)

x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2)
verify_model(test_fn(1, 0), [x])
verify_model(test_fn(-1, 0), [x])
verify_model(test_fn(shifts=(2, 1), dims=(0, 1)), [x])


if __name__ == "__main__":
pytest.main([__file__])