Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 24 additions & 6 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -1557,7 +1557,12 @@ def _impl_common(cls, data, indices, batch_dims=0):
indices_shape = infer_shape(indices)
indices = _op.transpose(indices, axes=[-1] + list(range(indices_dims - 1)))
index_rank = indices_shape[-1]
return _op.gather_nd(data, indices, batch_dims, index_rank)
return _op.gather_nd(
data,
indices,
batch_dims=batch_dims,
index_rank=index_rank,
)

@classmethod
def _impl_v1(cls, inputs, attr, params):
Expand Down Expand Up @@ -3541,6 +3546,11 @@ def _impl_v13(cls, inputs, attr, params):
)

input_tensor, target_tensor = inputs[0], inputs[1]

# Convert negative indices --> positive indices for gather ops, note we have to
# use the original target tensor to interact with ignore_index to have proper behavior.
normalized_target_tensor = normalize_gather_indices(input_tensor, target_tensor, 1)

if len(inputs) == 3:
weight_tensor = inputs[2]
else:
Expand All @@ -3550,12 +3560,18 @@ def _impl_v13(cls, inputs, attr, params):
dtype=input_tensor.type_annotation.dtype,
)

loss = -relay.gather(input_tensor, axis=1, indices=relay.expand_dims(target_tensor, 1))
loss = -relay.gather(
input_tensor,
axis=1,
indices=relay.expand_dims(normalized_target_tensor, 1),
)
loss = relay.squeeze(loss, axis=[1])

expanded_target_tensor = relay.expand_dims(target_tensor, 0)
expanded_target_tensor = relay.nn.batch_flatten(expanded_target_tensor)
flattened_weights = relay.gather_nd(weight_tensor, expanded_target_tensor)
expanded_normalized_target_tensor = relay.expand_dims(normalized_target_tensor, 0)
expanded_normalized_target_tensor = relay.nn.batch_flatten(
expanded_normalized_target_tensor
)
flattened_weights = relay.gather_nd(weight_tensor, expanded_normalized_target_tensor)
select_weights = relay.reshape_like(flattened_weights, loss)
loss *= select_weights

Expand All @@ -3565,7 +3581,9 @@ def _impl_v13(cls, inputs, attr, params):
target_tensor, relay.const(ignore_index, dtype=target_tensor.type_annotation.dtype)
)
mask_tensor = relay.const(1, dtype="int8") - relay.cast(mask_tensor, "int8")
loss *= relay.cast_like(mask_tensor, loss)
loss = relay.where(
mask_tensor, loss, relay.const(0, infer_type(loss).checked_type.dtype)
)

# This is not explained super clearly in the onnx spec, but masked values don't
# contribute toward the final value in reduction
Expand Down
5 changes: 0 additions & 5 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -4787,11 +4787,6 @@ def verify_eyelike(indata):
"test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded",
"test_nllloss_NCd1d2d3d4d5_mean_weight_expanded",
"test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded",
# These nllloss tests are flaky and sometimes gives NaNs
# Investigate it here: https://github.com/apache/tvm/issues/8918
"test_nllloss_NCd1d2d3_none_no_weight_negative_ii",
# Investigate it here: https://github.com/apache/tvm/issues/8964
"test_nllloss_NCd1d2d3_sum_weight_high_ii",
"test_qlinearmatmul_2D",
"test_qlinearmatmul_3D",
"test_range_float_type_positive_delta_expanded",
Expand Down
4 changes: 2 additions & 2 deletions tests/python/relay/test_any.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@
from tvm.relay.loops import while_loop
from tvm.relay.testing import run_infer_type as infer_type

from utils.assert_diagnostic import DiagnosticTesting
from utils import ref_funcs
from utils.assert_diagnostic import DiagnosticTesting


def int32(val):
Expand Down Expand Up @@ -2046,7 +2046,7 @@ def test_gather_nd():
def verify_gather_nd(data_shape, indices_shape, data_shape_np, indices_shape_np, batch_dims=0):
x = relay.var("x", relay.TensorType(data_shape, "float32"))
y = relay.var("y", relay.TensorType(indices_shape, "int32"))
z = relay.gather_nd(x, y, batch_dims, indices_shape[0])
z = relay.gather_nd(x, y, batch_dims=batch_dims, index_rank=indices_shape[0])

mod = tvm.IRModule()
mod["main"] = relay.Function([x, y], z)
Expand Down