Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 62 additions & 3 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@

import numpy as np
import tvm
from tvm import relay
from tvm.ir import IRModule
from tvm.topi.utils import get_const_tuple

Expand All @@ -32,23 +33,23 @@
from .. import loops as _loops
from .. import op as _op
from .. import qnn as _qnn
from .. import random as _random
from .. import ty as _ty
from .. import vision as _vision
from .. import random as _random
from .common import (
AttrCvt,
Renamer,
fold_constant,
get_name,
get_relay_op,
gru_cell,
infer_channels,
infer_shape,
infer_type,
infer_value,
lstm_cell,
new_var,
unbind,
gru_cell,
lstm_cell,
)

__all__ = ["from_onnx"]
Expand Down Expand Up @@ -3481,6 +3482,62 @@ def _impl_v1(cls, inputs, attr, params):
return vals


class NegativeLogLikelihoodLoss(OnnxOpConverter):
"""Operator converter for random_uniform"""

VALID_REDUCTIONS = {"mean", "sum", "none"}

@classmethod
def _impl_v13(cls, inputs, attr, params):
ignore_index = attr.get("ignore_index", None)
reduction = attr.get("reduction", b"mean").decode("utf-8")

if reduction not in cls.VALID_REDUCTIONS:
raise ValueError(
f"Unknown reduction type {reduction}, choices are {cls.VALID_REDUCTIONS}"
)

input_tensor, target_tensor = inputs[0], inputs[1]
if len(inputs) == 3:
weight_tensor = inputs[2]
else:
channels = infer_shape(input_tensor)[1]
weight_tensor = relay.ones(
[channels],
dtype=input_tensor.type_annotation.dtype,
)

loss = -relay.gather(input_tensor, axis=1, indices=relay.expand_dims(target_tensor, 1))
loss = relay.squeeze(loss, axis=[1])

expanded_target_tensor = relay.expand_dims(target_tensor, 0)
expanded_target_tensor = relay.nn.batch_flatten(expanded_target_tensor)
flattened_weights = relay.gather_nd(weight_tensor, expanded_target_tensor)
select_weights = relay.reshape_like(flattened_weights, loss)
loss *= select_weights

if ignore_index is not None:
# "Ignore" values whose target is the ignore_index
mask_tensor = relay.equal(
target_tensor, relay.const(ignore_index, dtype=target_tensor.type_annotation.dtype)
)
mask_tensor = relay.const(1, dtype="int8") - relay.cast(mask_tensor, "int8")
loss *= relay.cast_like(mask_tensor, loss)

# This is not explained super clearly in the onnx spec, but masked values don't
# contribute toward the final value in reduction
select_weights *= relay.cast_like(mask_tensor, select_weights)

weight_total = relay.sum(select_weights)

if reduction == "mean":
return relay.sum(loss) / weight_total
if reduction == "sum":
return relay.sum(loss)
# Case reduction == 'none'
return loss


# compatible operators that do NOT require any conversion.
_identity_list = []

Expand Down Expand Up @@ -3663,6 +3720,8 @@ def _get_convert_map(opset):
"ConvInteger": ConvInteger.get_converter(opset),
# Random number generation.
"RandomUniform": RandomUniform.get_converter(opset),
# Loss functions
"NegativeLogLikelihoodLoss": NegativeLogLikelihoodLoss.get_converter(opset),
}


Expand Down
19 changes: 1 addition & 18 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -4752,41 +4752,24 @@ def verify_eyelike(indata):
"test_momentum_multiple",
"test_mvn",
"test_nesterov_momentum",
"test_nllloss_NC",
# When unsqueeze is fully supported, remaining nllloss tests should work:
"test_nllloss_NC_expanded",
"test_nllloss_NCd1",
"test_nllloss_NCd1_expanded",
"test_nllloss_NCd1_ii",
"test_nllloss_NCd1_ii_expanded",
"test_nllloss_NCd1_mean_weight_negative_ii",
"test_nllloss_NCd1_mean_weight_negative_ii_expanded",
"test_nllloss_NCd1_weight",
"test_nllloss_NCd1_weight_expanded",
"test_nllloss_NCd1_weight_ii",
"test_nllloss_NCd1_weight_ii_expanded",
"test_nllloss_NCd1d2",
"test_nllloss_NCd1d2_expanded",
"test_nllloss_NCd1d2_no_weight_reduction_mean_ii",
"test_nllloss_NCd1d2_no_weight_reduction_mean_ii_expanded",
"test_nllloss_NCd1d2_reduction_mean",
"test_nllloss_NCd1d2_reduction_mean_expanded",
"test_nllloss_NCd1d2_reduction_sum",
"test_nllloss_NCd1d2_reduction_sum_expanded",
"test_nllloss_NCd1d2_with_weight",
"test_nllloss_NCd1d2_with_weight_expanded",
"test_nllloss_NCd1d2_with_weight_reduction_mean",
"test_nllloss_NCd1d2_with_weight_reduction_mean_expanded",
"test_nllloss_NCd1d2_with_weight_reduction_sum",
"test_nllloss_NCd1d2_with_weight_reduction_sum_expanded",
"test_nllloss_NCd1d2_with_weight_reduction_sum_ii",
"test_nllloss_NCd1d2_with_weight_reduction_sum_ii_expanded",
"test_nllloss_NCd1d2d3_none_no_weight_negative_ii",
"test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded",
"test_nllloss_NCd1d2d3_sum_weight_high_ii",
"test_nllloss_NCd1d2d3_sum_weight_high_ii_expanded",
"test_nllloss_NCd1d2d3d4d5_mean_weight",
"test_nllloss_NCd1d2d3d4d5_mean_weight_expanded",
"test_nllloss_NCd1d2d3d4d5_none_no_weight",
"test_nllloss_NCd1d2d3d4d5_none_no_weight_expanded",
"test_pow_types_float",
"test_pow_types_float32_int32",
Expand Down