Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -2227,8 +2227,17 @@ def body_fn(*loop_inputs):
# Add new scan outputs to tracking
combined_scan_outputs = []
for i, scan in enumerate(scan_outputs):
new_scan = _op.expand_dims(new_scan_outputs[i], axis=0)
combined_scan = _op.concatenate([scan, new_scan], axis=0)
rank = len(infer_shape(scan)) - 1
new_scan = new_scan_outputs[i]
expand_scan = _op.expand_dims(new_scan, axis=0)
# For non scalar outputs we need to broadcast the initial value.
if rank > 0:
new_scan_shape = _op.shape_of(new_scan, dtype=iter_dtype)
scan_broadcast = _op.concatenate(
[_op.reshape(loop_count, [1]), new_scan_shape], axis=0
)
scan = _op.broadcast_to(scan, scan_broadcast)
combined_scan = _op.concatenate([scan, expand_scan], axis=0)
combined_scan_outputs.append(combined_scan)

# Increment counter.
Expand Down
27 changes: 15 additions & 12 deletions python/tvm/topi/x86/injective.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
# pylint: disable=invalid-name
"""x86 declaration and schedules."""
from tvm import te
from tvm.tir import IntImm
from ..utils import is_empty_shape


Expand Down Expand Up @@ -100,18 +101,20 @@ def schedule_concatenate(outs):
def vectorize(sch, tensor, vectorize_limit):
"""Internal vectorization function for concatenate."""
inner_axis = s[tensor].op.axis[len(s[tensor].op.axis) - 1]
inner_length = tensor.shape[len(tensor.shape) - 1].value
if inner_length <= vectorize_limit:
sch[tensor].vectorize(inner_axis)
else:
split_factor = 1
for i in range(vectorize_limit, 1, -1):
if inner_length % i == 0:
split_factor = i
break
if split_factor > 1:
_, inner_i = sch[tensor].split(inner_axis, split_factor)
sch[tensor].vectorize(inner_i)
# Check that the tensor shape is static. Otherwise skip vectorization.
if isinstance(tensor.shape[len(tensor.shape) - 1], IntImm):
inner_length = tensor.shape[len(tensor.shape) - 1].value
if inner_length <= vectorize_limit:
sch[tensor].vectorize(inner_axis)
else:
split_factor = 1
for i in range(vectorize_limit, 1, -1):
if inner_length % i == 0:
split_factor = i
break
if split_factor > 1:
_, inner_i = sch[tensor].split(inner_axis, split_factor)
sch[tensor].vectorize(inner_i)

outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs
x = outs[0]
Expand Down
74 changes: 66 additions & 8 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -3654,14 +3654,14 @@ def verify_cond_loop():


def verify_count_loop():
y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, [1])
y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, [1])
scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, [1])
y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, [])
y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, [])
scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, [])
cond_in = helper.make_tensor_value_info("cond_in", TensorProto.BOOL, [])
cond_out = helper.make_tensor_value_info("cond_out", TensorProto.BOOL, [])
iter_count = helper.make_tensor_value_info("iter_count", TensorProto.INT64, [])

y = np.array([-2]).astype(np.float32)
y = np.array(-2).astype(np.float32)

iter_cast_node = helper.make_node(
"Cast", inputs=["iter_count"], outputs=["iter_cast"], to=onnx.TensorProto.FLOAT
Expand Down Expand Up @@ -3693,11 +3693,11 @@ def verify_count_loop():
inputs=[
onnx.helper.make_tensor_value_info("trip_count", onnx.TensorProto.INT64, []),
onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []),
onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, [1]),
onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, []),
],
outputs=[
onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, [1]),
onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, [5, 1]),
onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, []),
onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, [5]),
],
)
loop_model = onnx.helper.make_model(loop_graph)
Expand All @@ -3708,11 +3708,69 @@ def verify_count_loop():
verify_with_ort_with_inputs(loop_model, input_vals, use_vm=True, freeze_params=True)


def verify_tensor_loop():
y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, [3, 3, 3, 3])
y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, [3, 3, 3, 3])
scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, [3, 3, 3, 3])
cond_in = helper.make_tensor_value_info("cond_in", TensorProto.BOOL, [])
cond_out = helper.make_tensor_value_info("cond_out", TensorProto.BOOL, [])
iter_count = helper.make_tensor_value_info("iter_count", TensorProto.INT64, [])

y = np.random.normal(size=[3, 3, 3, 3]).astype(np.float32)

iter_cast_node = helper.make_node(
"Cast", inputs=["iter_count"], outputs=["iter_cast"], to=onnx.TensorProto.FLOAT
)

y_add_node = helper.make_node("Add", inputs=["y_in", "iter_cast"], outputs=["y_out"])

identity_node = helper.make_node("Identity", inputs=["cond_in"], outputs=["cond_out"])

scan_identity_node = helper.make_node("Identity", inputs=["y_out"], outputs=["scan_out"])

loop_body = helper.make_graph(
[identity_node, iter_cast_node, y_add_node, scan_identity_node],
"loop_body",
[iter_count, cond_in, y_in],
[cond_out, y_out, scan_out],
)

loop_node = helper.make_node(
"Loop", inputs=["trip_count", "cond", "y"], outputs=["res_y", "res_scan"], body=loop_body
)

trip_count = np.array(5).astype(np.int64)
cond = np.array(1).astype(np.bool)
loop_graph = onnx.helper.make_graph(
[loop_node],
"loop_outer",
inputs=[
onnx.helper.make_tensor_value_info("trip_count", onnx.TensorProto.INT64, []),
onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []),
onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, [3, 3, 3, 3]),
],
outputs=[
onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, [3, 3, 3, 3]),
onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, [5, 3, 3, 3, 3]),
],
)
loop_model = onnx.helper.make_model(loop_graph)

trip_count = np.array(5).astype(np.int64)
cond = np.array(1).astype(np.bool)
input_vals = [trip_count, cond, y]
verify_with_ort_with_inputs(
loop_model, input_vals, use_vm=True, freeze_params=True, convert_to_static=True
)


def test_loop():
# Test a loop that exits once a condition is met.
verify_cond_loop()
# Test a loop that exits after a fixed number of iterations.
# Test a loop that exits after a fixed number of iterations with scalar outputs.
verify_count_loop()
# Test a loop that uses an array output.
verify_tensor_loop()


def verify_if(cond_array):
Expand Down