Skip to content

Performance issue in PassUpDomain when fusing and splitting axes. #3072

@bulanova-huawei

Description

@bulanova-huawei

PassUpDomain estimates a bounding box for IntSet conservatively when axes are first fused, and then split.
Code:

import tvm
m = tvm.convert(12)
l = tvm.convert(6)
A = tvm.placeholder((m, l), name='A')
A1 = tvm.compute((m, l), lambda i, j: A[i, j], name='A1')
A2 = tvm.compute((m, l), lambda i, j: A1[i, j] + 3, name='A2')

s = tvm.create_schedule(A2.op)
fused_axes = s[A2].fuse(A2.op.axis[0], A2.op.axis[1])
xo, xi = s[A2].split(fused_axes, 12)
s[A1].compute_at(s[A2], xo)


print(tvm.lower(s, [A, A1, A2], simple_mode=True))

produces

produce A2 {
  for (i.j.fused.outer, 0, 6) {
    produce A1 {
      for (i, 0, 12) {
        for (j, 0, 6) {
          A1[((i*6) + j)] = A[((i*6) + j)]
        }
      }
    }
    for (i.j.fused.inner, 0, 12) {
      A2[((i.j.fused.outer*12) + i.j.fused.inner)] = (A1[((i.j.fused.outer*12) + i.j.fused.inner)] + 3.000000f)
    }
  }
}

Note that the whole tensor A1 is realized at each iteration of i.j.fused.outer.
More efficient would be:

produce A2 {
  for (i.j.fused.outer, 0, 6) {
    produce A1 {
      for (i, 0, 2) {
        for (j, 0, 6) {
          A1[((((i.j.fused.outer*2) + i)*6) + j)] = A[((((i.j.fused.outer*2) + i)*6) + j)]
        }
      }
    }
    for (i.j.fused.inner, 0, 12) {
      A2[((i.j.fused.outer*12) + i.j.fused.inner)] = (A1[((i.j.fused.outer*12) + i.j.fused.inner)] + 3.000000f)
    }
  }
}

Related discussions:
https://discuss.tvm.ai/t/discuss-contributing-new-docs-for-inferbound/2151/9
https://discuss.tvm.ai/t/tensorize-which-use-case-is-correct/2140/4

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions