-
Notifications
You must be signed in to change notification settings - Fork 28.7k
[SPARK-6538][SQL] Add missing nullable Metastore fields when merging a Parquet schema #5188
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Can one of the admins verify this patch? |
The behavior you describe sounds like a reasonable default to me, but I'll let @liancheng comment on the specifics. Regarding making a pull request, generally these should be opened against master unless this is a port to a specific branch that does not apply cleanly to master. We will backport as needed when merging. We will also have to reconcile this with #5141. |
Hey @budde, sorry that I just merged #5141 to fix a regression, and introduced conflicts to this PR. As @marmbrus suggested, would you mind to open a PR against master? Verified that by disabling the new Parquet data source and metastore Parquet table conversion, both 1.2.0 and 1.3.0 works in this scenario. After double thinking about the semantics of the metastore / parquet schema reconcilation process, I think the rules should be:
|
Thanks for the input, @marmbrus and @liancheng. I'll resolve the conflicts and open a new PR against master. |
@liancheng those rules sound pretty reasonable to me. Maybe we should add them to the programming guide? |
@marmbrus Sure. Opening a PR for this. |
Just for future referece, #5214 supercedes this PR. |
…a Parquet schema Opening to replace #5188. When Spark SQL infers a schema for a DataFrame, it will take the union of all field types present in the structured source data (e.g. an RDD of JSON data). When the source data for a row doesn't define a particular field on the DataFrame's schema, a null value will simply be assumed for this field. This workflow makes it very easy to construct tables and query over a set of structured data with a nonuniform schema. However, this behavior is not consistent in some cases when dealing with Parquet files and an external table managed by an external Hive metastore. In our particular usecase, we use Spark Streaming to parse and transform our input data and then apply a window function to save an arbitrary-sized batch of data as a Parquet file, which itself will be added as a partition to an external Hive table via an *"ALTER TABLE... ADD PARTITION..."* statement. Since our input data is nonuniform, it is expected that not every partition batch will contain every field present in the table's schema obtained from the Hive metastore. As such, we expect that the schema of some of our Parquet files may not contain the same set fields present in the full metastore schema. In such cases, it seems natural that Spark SQL would simply assume null values for any missing fields in the partition's Parquet file, assuming these fields are specified as nullable by the metastore schema. This is not the case in the current implementation of ParquetRelation2. The **mergeMetastoreParquetSchema()** method used to reconcile differences between a Parquet file's schema and a schema retrieved from the Hive metastore will raise an exception if the Parquet file doesn't match the same set of fields specified by the metastore. This pull requests alters the behavior of **mergeMetastoreParquetSchema()** by having it first add any nullable fields from the metastore schema to the Parquet file schema if they aren't already present there. Author: Adam Budde <budde@amazon.com> Closes #5214 from budde/nullable-fields and squashes the following commits: a52d378 [Adam Budde] Refactor ParquetSchemaSuite.scala for cases now permitted by SPARK-6471 and SPARK-6538 9041bfa [Adam Budde] Add missing nullable Metastore fields when merging a Parquet schema (cherry picked from commit 5909f09) Signed-off-by: Cheng Lian <lian@databricks.com>
…a Parquet schema Opening to replace #5188. When Spark SQL infers a schema for a DataFrame, it will take the union of all field types present in the structured source data (e.g. an RDD of JSON data). When the source data for a row doesn't define a particular field on the DataFrame's schema, a null value will simply be assumed for this field. This workflow makes it very easy to construct tables and query over a set of structured data with a nonuniform schema. However, this behavior is not consistent in some cases when dealing with Parquet files and an external table managed by an external Hive metastore. In our particular usecase, we use Spark Streaming to parse and transform our input data and then apply a window function to save an arbitrary-sized batch of data as a Parquet file, which itself will be added as a partition to an external Hive table via an *"ALTER TABLE... ADD PARTITION..."* statement. Since our input data is nonuniform, it is expected that not every partition batch will contain every field present in the table's schema obtained from the Hive metastore. As such, we expect that the schema of some of our Parquet files may not contain the same set fields present in the full metastore schema. In such cases, it seems natural that Spark SQL would simply assume null values for any missing fields in the partition's Parquet file, assuming these fields are specified as nullable by the metastore schema. This is not the case in the current implementation of ParquetRelation2. The **mergeMetastoreParquetSchema()** method used to reconcile differences between a Parquet file's schema and a schema retrieved from the Hive metastore will raise an exception if the Parquet file doesn't match the same set of fields specified by the metastore. This pull requests alters the behavior of **mergeMetastoreParquetSchema()** by having it first add any nullable fields from the metastore schema to the Parquet file schema if they aren't already present there. Author: Adam Budde <budde@amazon.com> Closes #5214 from budde/nullable-fields and squashes the following commits: a52d378 [Adam Budde] Refactor ParquetSchemaSuite.scala for cases now permitted by SPARK-6471 and SPARK-6538 9041bfa [Adam Budde] Add missing nullable Metastore fields when merging a Parquet schema
This PR adds a section about Hive metastore Parquet table conversion. It documents: 1. Schema reconciliation rules introduced in #5214 (see [this comment] [1] in #5188) 2. Metadata refreshing requirement introduced in #5339 [1]: #5188 (comment) Author: Cheng Lian <lian@databricks.com> Closes #5348 from liancheng/sql-doc-parquet-conversion and squashes the following commits: 42ae0d0 [Cheng Lian] Adds Python `refreshTable` snippet 4c9847d [Cheng Lian] Resorts to SQL for Python metadata refreshing snippet 756e660 [Cheng Lian] Adds Python snippet for metadata refreshing 50675db [Cheng Lian] Addes Hive metastore Parquet table conversion section
When Spark SQL infers a schema for a DataFrame, it will take the union of all field types present in the structured source data (e.g. an RDD of JSON data). When the source data for a row doesn't define a particular field on the DataFrame's schema, a null value will simply be assumed for this field. This workflow makes it very easy to construct tables and query over a set of structured data with a nonuniform schema. However, this behavior is not consistent in some cases when dealing with Parquet files and an external table managed by an external Hive metastore.
In our particular usecase, we use Spark Streaming to parse and transform our input data and then apply a window function to save an arbitrary-sized batch of data as a Parquet file, which itself will be added as a partition to an external Hive table via an "ALTER TABLE... ADD PARTITION..." statement. Since our input data is nonuniform, it is expected that not every partition batch will contain every field present in the table's schema obtained from the Hive metastore. As such, we expect that the schema of some of our Parquet files may not contain the same set fields present in the full metastore schema.
In such cases, it seems natural that Spark SQL would simply assume null values for any missing fields in the partition's Parquet file, assuming these fields are specified as nullable by the metastore schema. This is not the case in the current implementation of ParquetRelation2. The mergeMetastoreParquetSchema() method used to reconcile differences between a Parquet file's schema and a schema retrieved from the Hive metastore will raise an exception if the Parquet file doesn't match the same set of fields specified by the metastore.
This pull requests alters the behavior of mergeMetastoreParquetSchema() by having it first add any nullable fields from the metastore schema to the Parquet file schema if they aren't already present there.
Besides the usual code quality and correctness feedback, I'd appreciate any comments specifically on:
Thanks for taking a look!