Skip to content

[SPARK-5722][SQL] fix for infer long type in python similar to Java long #4521

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 9 commits into from
13 changes: 10 additions & 3 deletions python/pyspark/sql.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,10 +574,13 @@ def _parse_datatype_json_value(json_value):


# Mapping Python types to Spark SQL DataType
# int -> LongType below so we can do not have to deal with
# the differences between Java int and Python ints when
# inferring data types. SPARK-5722
_type_mappings = {
type(None): NullType,
bool: BooleanType,
int: IntegerType,
int: LongType,
long: LongType,
float: DoubleType,
str: StringType,
Expand Down Expand Up @@ -681,6 +684,8 @@ def _need_python_to_sql_conversion(dataType):
_need_python_to_sql_conversion(dataType.valueType)
elif isinstance(dataType, UserDefinedType):
return True
elif isinstance(dataType, LongType):
return True
else:
return False

Expand Down Expand Up @@ -734,6 +739,8 @@ def converter(obj):
return lambda m: dict([(key_converter(k), value_converter(v)) for k, v in m.items()])
elif isinstance(dataType, UserDefinedType):
return lambda obj: dataType.serialize(obj)
elif isinstance(dataType, LongType):
return lambda x: long(x)
else:
raise ValueError("Unexpected type %r" % dataType)

Expand Down Expand Up @@ -926,11 +933,11 @@ def _infer_schema_type(obj, dataType):
>>> schema = _parse_schema_abstract("a b c d")
>>> row = (1, 1.0, "str", datetime.date(2014, 10, 10))
>>> _infer_schema_type(row, schema)
StructType...IntegerType...DoubleType...StringType...DateType...
StructType...LongType...DoubleType...StringType...DateType...
>>> row = [[1], {"key": (1, 2.0)}]
>>> schema = _parse_schema_abstract("a[] b{c d}")
>>> _infer_schema_type(row, schema)
StructType...a,ArrayType...b,MapType(StringType,...c,IntegerType...
StructType...a,ArrayType...b,MapType(StringType,...c,LongType...
"""
if dataType is None:
return _infer_type(obj)
Expand Down
24 changes: 23 additions & 1 deletion python/pyspark/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@
CloudPickleSerializer, CompressedSerializer
from pyspark.shuffle import Aggregator, InMemoryMerger, ExternalMerger, ExternalSorter
from pyspark.sql import SQLContext, IntegerType, Row, ArrayType, StructType, StructField, \
UserDefinedType, DoubleType
UserDefinedType, DoubleType, LongType, _infer_type
from pyspark import shuffle

_have_scipy = False
Expand Down Expand Up @@ -923,6 +923,28 @@ def test_infer_schema(self):
result = self.sqlCtx.sql("SELECT l[0].a from test2 where d['key'].d = '2'")
self.assertEqual(1, result.first()[0])

# SPARK-5722
def test_infer_long_type(self):
longrow = [Row(f1='a', f2=100000000000000)]
lrdd = self.sc.parallelize(longrow)
slrdd = self.sqlCtx.inferSchema(lrdd)
self.assertEqual(slrdd.schema().fields[1].dataType, LongType())

# this saving as Parquet caused issues as well.
output_dir = os.path.join(self.tempdir.name, "infer_long_type")
slrdd.saveAsParquetFile(output_dir)
df1 = self.sqlCtx.parquetFile(output_dir)
self.assertEquals('a', df1.first().f1)
self.assertEquals(100000000000000, df1.first().f2)

self.assertEqual(_infer_type(1), LongType())
self.assertEqual(_infer_type(2**10), LongType())
self.assertEqual(_infer_type(2**20), LongType())
self.assertEqual(_infer_type(2**31 - 1), LongType())
self.assertEqual(_infer_type(2**31), LongType())
self.assertEqual(_infer_type(2**61), LongType())
self.assertEqual(_infer_type(2**71), LongType())

def test_convert_row_to_dict(self):
row = Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")})
self.assertEqual(1, row.asDict()['l'][0].a)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,8 @@ object EvaluatePython {

case (dec: BigDecimal, dt: DecimalType) => dec.underlying() // Pyrolite can handle BigDecimal

case (_, LongType) => obj.asInstanceOf[Long]

// Pyrolite can handle Timestamp
case (other, _) => other
}
Expand Down