Skip to content

[FIX] make coalesce test deterministic in RDDSuite #387

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 33 additions & 28 deletions core/src/test/scala/org/apache/spark/rdd/RDDSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -274,37 +274,42 @@ class RDDSuite extends FunSuite with SharedSparkContext {
test("coalesced RDDs with locality, large scale (10K partitions)") {
// large scale experiment
import collection.mutable
val rnd = scala.util.Random
val partitions = 10000
val numMachines = 50
val machines = mutable.ListBuffer[String]()
(1 to numMachines).foreach(machines += "m"+_)

val blocks = (1 to partitions).map(i =>
{ (i, Array.fill(3)(machines(rnd.nextInt(machines.size))).toList) } )

val data2 = sc.makeRDD(blocks)
val coalesced2 = data2.coalesce(numMachines*2)

// test that you get over 90% locality in each group
val minLocality = coalesced2.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
.foldLeft(1.0)((perc, loc) => math.min(perc,loc))
assert(minLocality >= 0.90, "Expected 90% locality but got " + (minLocality*100.0).toInt + "%")

// test that the groups are load balanced with 100 +/- 20 elements in each
val maxImbalance = coalesced2.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].parents.size)
.foldLeft(0)((dev, curr) => math.max(math.abs(100-curr),dev))
assert(maxImbalance <= 20, "Expected 100 +/- 20 per partition, but got " + maxImbalance)

val data3 = sc.makeRDD(blocks).map(i => i*2) // derived RDD to test *current* pref locs
val coalesced3 = data3.coalesce(numMachines*2)
val minLocality2 = coalesced3.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
.foldLeft(1.0)((perc, loc) => math.min(perc,loc))
assert(minLocality2 >= 0.90, "Expected 90% locality for derived RDD but got " +
(minLocality2*100.0).toInt + "%")
(1 to numMachines).foreach(machines += "m" + _)
val rnd = scala.util.Random
for (seed <- 1 to 5) {
rnd.setSeed(seed)

val blocks = (1 to partitions).map { i =>
(i, Array.fill(3)(machines(rnd.nextInt(machines.size))).toList)
}

val data2 = sc.makeRDD(blocks)
val coalesced2 = data2.coalesce(numMachines * 2)

// test that you get over 90% locality in each group
val minLocality = coalesced2.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
.foldLeft(1.0)((perc, loc) => math.min(perc, loc))
assert(minLocality >= 0.90, "Expected 90% locality but got " +
(minLocality * 100.0).toInt + "%")

// test that the groups are load balanced with 100 +/- 20 elements in each
val maxImbalance = coalesced2.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].parents.size)
.foldLeft(0)((dev, curr) => math.max(math.abs(100 - curr), dev))
assert(maxImbalance <= 20, "Expected 100 +/- 20 per partition, but got " + maxImbalance)

val data3 = sc.makeRDD(blocks).map(i => i * 2) // derived RDD to test *current* pref locs
val coalesced3 = data3.coalesce(numMachines * 2)
val minLocality2 = coalesced3.partitions
.map(part => part.asInstanceOf[CoalescedRDDPartition].localFraction)
.foldLeft(1.0)((perc, loc) => math.min(perc, loc))
assert(minLocality2 >= 0.90, "Expected 90% locality for derived RDD but got " +
(minLocality2 * 100.0).toInt + "%")
}
}

test("zipped RDDs") {
Expand Down