Skip to content

[SPARK-31390][SQL][DOCS] Document Window Function in SQL Syntax Section #28220

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 9 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/_data/menu-sql.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,8 @@
url: sql-ref-syntax-qry-select-inline-table.html
- text: Common Table Expression
url: sql-ref-syntax-qry-select-cte.html
- text: Window Function
url: sql-ref-syntax-qry-window.html
- text: EXPLAIN
url: sql-ref-syntax-qry-explain.html
- text: Auxiliary Statements
Expand Down
190 changes: 187 additions & 3 deletions docs/sql-ref-syntax-qry-window.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
---
layout: global
title: Windowing Analytic Functions
displayTitle: Windowing Analytic Functions
title: Window Functions
displayTitle: Window Functions
license: |
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
Expand All @@ -19,4 +19,188 @@ license: |
limitations under the License.
---

**This page is under construction**
### Description

Window functions operate on a group of rows, referred to as a window, and calculate a return value for each row based on the group of rows. Window functions are useful for processing tasks such as calculating a moving average, computing a cumulative statistic, or accessing the value of rows given the relative position of the current row.

### Syntax

{% highlight sql %}
window_function OVER
( [ { PARTITION | DISTRIBUTE } BY partition_col_name = partition_col_val ( [ , ... ] ) ]
{ ORDER | SORT } BY expression [ ASC | DESC ] [ NULLS { FIRST | LAST } ] [ , ... ]
[ window_frame ] )
{% endhighlight %}

### Parameters

<dl>
<dt><code><em>window_function</em></code></dt>
<dd>
<ul>
<li>Ranking Functions</li>
<br>
<b>Syntax:</b>
<code>
RANK | DENSE_RANK | PERCENT_RANK | NTILE | ROW_NUMBER
</code>
</ul>
<ul>
<li>Analytic Functions</li>
<br>
<b>Syntax:</b>
<code>
CUME_DIST | LAG | LEAD
</code>
</ul>
<ul>
<li>Aggregate Functions</li>
<br>
<b>Syntax:</b>
<code>
MAX | MIN | COUNT | SUM | AVG | ...
</code>
<br>
Please refer to the <a href="api/sql/">Built-in Functions</a> document for a complete list of Spark aggregate functions.
</ul>
</dd>
</dl>
<dl>
<dt><code><em>window_frame</em></code></dt>
<dd>
Specifies which row to start the window on and where to end it.<br>
<b>Syntax:</b><br>
<code>{ RANGE | ROWS } { frame_start | BETWEEN frame_start AND frame_end }</code><br>
If frame_end is omitted it defaults to CURRENT ROW.<br><br>
<ul>
<code>frame_start</code> and <code>frame_end</code> have the following syntax<br>
<b>Syntax:</b><br>
<code>
UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW | offset FOLLOWING | UNBOUNDED FOLLOWING
</code><br>
<code>offset:</code>specifies the <code>offset</code> from the position of the current row.
</ul>
</dd>
</dl>

### Examples

{% highlight sql %}
CREATE TABLE employees (name STRING, dept STRING, salary INT, age INT);

INSERT INTO employees VALUES ("Lisa", "Sales", 10000, 35);
INSERT INTO employees VALUES ("Evan", "Sales", 32000, 38);
INSERT INTO employees VALUES ("Fred", "Engineering", 21000, 28);
INSERT INTO employees VALUES ("Alex", "Sales", 30000, 33);
INSERT INTO employees VALUES ("Tom", "Engineering", 23000, 33);
INSERT INTO employees VALUES ("Jane", "Marketing", 29000, 28);
INSERT INTO employees VALUES ("Jeff", "Marketing", 35000, 38);
INSERT INTO employees VALUES ("Paul", "Engineering", 29000, 23);
INSERT INTO employees VALUES ("Chloe", "Engineering", 23000, 25);

SELECT * FROM employees;
+-----+-----------+------+-----+
| name| dept|salary| age|
+-----+-----------+------+-----+
|Chloe|Engineering| 23000| 25|
| Fred|Engineering| 21000| 28|
| Paul|Engineering| 29000| 23|
|Helen| Marketing| 29000| 40|
| Tom|Engineering| 23000| 33|
| Jane| Marketing| 29000| 28|
| Jeff| Marketing| 35000| 38|
| Evan| Sales| 32000| 38|
| Lisa| Sales| 10000| 35|
| Alex| Sales| 30000| 33|
+-----+-----------+------+-----+

SELECT name, dept, RANK() OVER (PARTITION BY dept ORDER BY salary) AS rank FROM employees;
+-----+-----------+------+----+
| name| dept|salary|rank|
+-----+-----------+------+----+
| Lisa| Sales| 10000| 1|
| Alex| Sales| 30000| 2|
| Evan| Sales| 32000| 3|
| Fred|Engineering| 21000| 1|
| Tom|Engineering| 23000| 2|
|Chloe|Engineering| 23000| 2|
| Paul|Engineering| 29000| 4|
|Helen| Marketing| 29000| 1|
| Jane| Marketing| 29000| 1|
| Jeff| Marketing| 35000| 3|
+-----+-----------+------+----+

SELECT name, dept, DENSE_RANK() OVER (PARTITION BY dept ORDER BY salary ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW) AS dense_rank FROM employees;
+-----+-----------+------+----------+
| name| dept|salary|dense_rank|
+-----+-----------+------+----------+
| Lisa| Sales| 10000| 1|
| Alex| Sales| 30000| 2|
| Evan| Sales| 32000| 3|
| Fred|Engineering| 21000| 1|
| Tom|Engineering| 23000| 2|
|Chloe|Engineering| 23000| 2|
| Paul|Engineering| 29000| 3|
|Helen| Marketing| 29000| 1|
| Jane| Marketing| 29000| 1|
| Jeff| Marketing| 35000| 2|
+-----+-----------+------+----------+

SELECT name, dept, age, CUME_DIST() OVER (PARTITION BY dept ORDER BY age
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cume_dist FROM employees;
+-----+-----------+------+------------------+
| name| dept|age | cume_dist|
+-----+-----------+------+------------------+
| Alex| Sales| 33|0.3333333333333333|
| Lisa| Sales| 35|0.6666666666666666|
| Evan| Sales| 38| 1.0|
| Paul|Engineering| 23| 0.25|
|Chloe|Engineering| 25| 0.75|
| Fred|Engineering| 28| 0.25|
| Tom|Engineering| 33| 1.0|
| Jane| Marketing| 28|0.3333333333333333|
| Jeff| Marketing| 38|0.6666666666666666|
|Helen| Marketing| 40| 1.0|
+-----+-----------+------+------------------+

SELECT name, dept, salary, MIN(salary) OVER (PARTITION BY dept ORDER BY salary) AS min
FROM employees;
+-----+-----------+------+-----+
| name| dept|salary| min|
+-----+-----------+------+-----+
| Lisa| Sales| 10000|10000|
| Alex| Sales| 30000|10000|
| Evan| Sales| 32000|10000|
|Helen| Marketing| 29000|29000|
| Jane| Marketing| 29000|29000|
| Jeff| Marketing| 35000|29000|
| Fred|Engineering| 21000|21000|
| Tom|Engineering| 23000|21000|
|Chloe|Engineering| 23000|21000|
| Paul|Engineering| 29000|21000|
+-----+-----------+------+-----+

SELECT name, salary,
LAG(salary) OVER (PARTITION BY dept ORDER BY salary) AS lag,
LEAD(salary, 1, 0) OVER (PARTITION BY dept ORDER BY salary) AS lead
FROM employees;
+-----+-----------+------+-----+-----+
| name| dept|salary| lag| lead|
+-----+-----------+------+-----+-----+
| Lisa| Sales| 10000|NULL |30000|
| Alex| Sales| 30000|10000|32000|
| Evan| Sales| 32000|30000| 0|
| Fred|Engineering| 21000| NULL|23000|
|Chloe|Engineering| 23000|21000|23000|
| Tom|Engineering| 23000|23000|29000|
| Paul|Engineering| 29000|23000| 0|
|Helen| Marketing| 29000| NULL|29000|
| Jane| Marketing| 29000|29000|35000|
| Jeff| Marketing| 35000|29000| 0|
+-----+-----------+------+-----+-----+
{% endhighlight %}

### Related Statements

* [SELECT](sql-ref-syntax-qry-select.html)