Skip to content

[SPARK-30267][SQL] Avro arrays can be of any List #26907

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -167,14 +167,13 @@ class AvroDeserializer(rootAvroType: Schema, rootCatalystType: DataType) {
case (ARRAY, ArrayType(elementType, containsNull)) =>
val elementWriter = newWriter(avroType.getElementType, elementType, path)
(updater, ordinal, value) =>
val array = value.asInstanceOf[GenericData.Array[Any]]
val array = value.asInstanceOf[java.util.Collection[Any]]
val len = array.size()
val result = createArrayData(elementType, len)
val elementUpdater = new ArrayDataUpdater(result)

var i = 0
while (i < len) {
val element = array.get(i)
for (element <- array.asScala) {
if (element == null) {
if (!containsNull) {
throw new RuntimeException(s"Array value at path ${path.mkString(".")} is not " +
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,12 @@

package org.apache.spark.sql.avro

import java.util
import java.util.Collections

import org.apache.avro.Schema
import org.apache.avro.generic.{GenericData, GenericRecordBuilder}
import org.apache.avro.message.{BinaryMessageDecoder, BinaryMessageEncoder}

import org.apache.spark.{SparkException, SparkFunSuite}
import org.apache.spark.sql.{RandomDataGenerator, Row}
Expand Down Expand Up @@ -127,6 +132,26 @@ class AvroCatalystDataConversionSuite extends SparkFunSuite
}
}

test("array of nested schema with seed") {
val seed = scala.util.Random.nextLong()
val rand = new scala.util.Random(seed)
val schema = StructType(
StructField("a",
ArrayType(
RandomDataGenerator.randomNestedSchema(rand, 10, testingTypes),
containsNull = false),
nullable = false
) :: Nil
)

withClue(s"Schema: $schema\nseed: $seed") {
val data = RandomDataGenerator.randomRow(rand, schema)
val converter = CatalystTypeConverters.createToCatalystConverter(schema)
val input = Literal.create(converter(data), schema)
roundTripTest(input)
}
}

test("read int as string") {
val data = Literal(1)
val avroTypeJson =
Expand Down Expand Up @@ -246,4 +271,46 @@ class AvroCatalystDataConversionSuite extends SparkFunSuite
}.getMessage
assert(message == "Cannot convert Catalyst type StringType to Avro type \"long\".")
}

test("avro array can be generic java collection") {
val jsonFormatSchema =
"""
|{ "type": "record",
| "name": "record",
| "fields" : [{
| "name": "array",
| "type": {
| "type": "array",
| "items": ["null", "int"]
| }
| }]
|}
""".stripMargin
val avroSchema = new Schema.Parser().parse(jsonFormatSchema)
val dataType = SchemaConverters.toSqlType(avroSchema).dataType
val deserializer = new AvroDeserializer(avroSchema, dataType)

def checkDeserialization(data: GenericData.Record, expected: Any): Unit = {
assert(checkResult(
expected,
deserializer.deserialize(data),
dataType, exprNullable = false
))
}

def validateDeserialization(array: java.util.Collection[Integer]): Unit = {
val data = new GenericRecordBuilder(avroSchema)
.set("array", array)
.build()
val expected = InternalRow(new GenericArrayData(new util.ArrayList[Any](array)))
checkDeserialization(data, expected)

val reEncoded = new BinaryMessageDecoder[GenericData.Record](new GenericData(), avroSchema)
.decode(new BinaryMessageEncoder(new GenericData(), avroSchema).encode(data))
checkDeserialization(reEncoded, expected)
}

validateDeserialization(Collections.emptySet())
validateDeserialization(util.Arrays.asList(1, null, 3))
}
}