Skip to content

[SPARK-24768][SQL] Have a built-in AVRO data source implementation #21742

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion dev/run-tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def determine_modules_to_test(changed_modules):
['graphx', 'examples']
>>> x = [x.name for x in determine_modules_to_test([modules.sql])]
>>> x # doctest: +NORMALIZE_WHITESPACE
['sql', 'hive', 'mllib', 'sql-kafka-0-10', 'examples', 'hive-thriftserver',
['sql', 'avro', 'hive', 'mllib', 'sql-kafka-0-10', 'examples', 'hive-thriftserver',
'pyspark-sql', 'repl', 'sparkr', 'pyspark-mllib', 'pyspark-ml']
"""
modules_to_test = set()
Expand Down
10 changes: 10 additions & 0 deletions dev/sparktestsupport/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,16 @@ def __hash__(self):
]
)

avro = Module(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why does this need a separate module unlike other datasources?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is much cleaner, like what we did for kafka, which is also a built-in data source. Ideally, we should separate parquet, orc and other built-in data sources from sql module. We can do the refactoring in the future, if needed

name="avro",
dependencies=[sql],
source_file_regexes=[
"external/avro",
],
sbt_test_goals=[
"avro/test",
]
)

sql_kafka = Module(
name="sql-kafka-0-10",
Expand Down
73 changes: 73 additions & 0 deletions external/avro/pom.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
<?xml version="1.0" encoding="UTF-8"?>
<!--
~ Licensed to the Apache Software Foundation (ASF) under one or more
~ contributor license agreements. See the NOTICE file distributed with
~ this work for additional information regarding copyright ownership.
~ The ASF licenses this file to You under the Apache License, Version 2.0
~ (the "License"); you may not use this file except in compliance with
~ the License. You may obtain a copy of the License at
~
~ http://www.apache.org/licenses/LICENSE-2.0
~
~ Unless required by applicable law or agreed to in writing, software
~ distributed under the License is distributed on an "AS IS" BASIS,
~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
~ See the License for the specific language governing permissions and
~ limitations under the License.
-->

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.apache.spark</groupId>
<artifactId>spark-parent_2.11</artifactId>
<version>2.4.0-SNAPSHOT</version>
<relativePath>../../pom.xml</relativePath>
</parent>

<artifactId>spark-sql-avro_2.11</artifactId>
<properties>
<sbt.project.name>avro</sbt.project.name>
</properties>
<packaging>jar</packaging>
<name>Spark Avro</name>
<url>http://spark.apache.org/</url>

<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${project.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${project.version}</version>
<type>test-jar</type>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-catalyst_${scala.binary.version}</artifactId>
<version>${project.version}</version>
<type>test-jar</type>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.binary.version}</artifactId>
<version>${project.version}</version>
<type>test-jar</type>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-tags_${scala.binary.version}</artifactId>
</dependency>
</dependencies>
<build>
<outputDirectory>target/scala-${scala.binary.version}/classes</outputDirectory>
<testOutputDirectory>target/scala-${scala.binary.version}/test-classes</testOutputDirectory>
</build>
</project>
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
org.apache.spark.sql.avro.AvroFileFormat
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.avro

import java.io._
import java.net.URI
import java.util.zip.Deflater

import scala.util.control.NonFatal

import com.esotericsoftware.kryo.{Kryo, KryoSerializable}
import com.esotericsoftware.kryo.io.{Input, Output}
import org.apache.avro.{Schema, SchemaBuilder}
import org.apache.avro.file.{DataFileConstants, DataFileReader}
import org.apache.avro.generic.{GenericDatumReader, GenericRecord}
import org.apache.avro.mapred.{AvroOutputFormat, FsInput}
import org.apache.avro.mapreduce.AvroJob
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, Path}
import org.apache.hadoop.mapreduce.Job
import org.slf4j.LoggerFactory

import org.apache.spark.TaskContext
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions.GenericRow
import org.apache.spark.sql.execution.datasources.{FileFormat, OutputWriterFactory, PartitionedFile}
import org.apache.spark.sql.sources.{DataSourceRegister, Filter}
import org.apache.spark.sql.types.StructType

private[avro] class AvroFileFormat extends FileFormat with DataSourceRegister {
private val log = LoggerFactory.getLogger(getClass)

override def equals(other: Any): Boolean = other match {
case _: AvroFileFormat => true
case _ => false
}

// Dummy hashCode() to appease ScalaStyle.
override def hashCode(): Int = super.hashCode()

override def inferSchema(
spark: SparkSession,
options: Map[String, String],
files: Seq[FileStatus]): Option[StructType] = {
val conf = spark.sparkContext.hadoopConfiguration

// Schema evolution is not supported yet. Here we only pick a single random sample file to
// figure out the schema of the whole dataset.
val sampleFile =
if (conf.getBoolean(AvroFileFormat.IgnoreFilesWithoutExtensionProperty, true)) {
files.find(_.getPath.getName.endsWith(".avro")).getOrElse {
throw new FileNotFoundException(
"No Avro files found. Hadoop option \"avro.mapred.ignore.inputs.without.extension\" " +
" is set to true. Do all input files have \".avro\" extension?"
)
}
} else {
files.headOption.getOrElse {
throw new FileNotFoundException("No Avro files found.")
}
}

// User can specify an optional avro json schema.
val avroSchema = options.get(AvroFileFormat.AvroSchema)
.map(new Schema.Parser().parse)
.getOrElse {
val in = new FsInput(sampleFile.getPath, conf)
try {
val reader = DataFileReader.openReader(in, new GenericDatumReader[GenericRecord]())
try {
reader.getSchema
} finally {
reader.close()
}
} finally {
in.close()
}
}

SchemaConverters.toSqlType(avroSchema).dataType match {
case t: StructType => Some(t)
case _ => throw new RuntimeException(
s"""Avro schema cannot be converted to a Spark SQL StructType:
|
|${avroSchema.toString(true)}
|""".stripMargin)
}
}

override def shortName(): String = "avro"

override def isSplitable(
sparkSession: SparkSession,
options: Map[String, String],
path: Path): Boolean = true

override def prepareWrite(
spark: SparkSession,
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory = {
val recordName = options.getOrElse("recordName", "topLevelRecord")
val recordNamespace = options.getOrElse("recordNamespace", "")
val build = SchemaBuilder.record(recordName).namespace(recordNamespace)
val outputAvroSchema = SchemaConverters.convertStructToAvro(dataSchema, build, recordNamespace)

AvroJob.setOutputKeySchema(job, outputAvroSchema)
val AVRO_COMPRESSION_CODEC = "spark.sql.avro.compression.codec"
val AVRO_DEFLATE_LEVEL = "spark.sql.avro.deflate.level"
val COMPRESS_KEY = "mapred.output.compress"

spark.conf.get(AVRO_COMPRESSION_CODEC, "snappy") match {
case "uncompressed" =>
log.info("writing uncompressed Avro records")
job.getConfiguration.setBoolean(COMPRESS_KEY, false)

case "snappy" =>
log.info("compressing Avro output using Snappy")
job.getConfiguration.setBoolean(COMPRESS_KEY, true)
job.getConfiguration.set(AvroJob.CONF_OUTPUT_CODEC, DataFileConstants.SNAPPY_CODEC)

case "deflate" =>
val deflateLevel = spark.conf.get(
AVRO_DEFLATE_LEVEL, Deflater.DEFAULT_COMPRESSION.toString).toInt
log.info(s"compressing Avro output using deflate (level=$deflateLevel)")
job.getConfiguration.setBoolean(COMPRESS_KEY, true)
job.getConfiguration.set(AvroJob.CONF_OUTPUT_CODEC, DataFileConstants.DEFLATE_CODEC)
job.getConfiguration.setInt(AvroOutputFormat.DEFLATE_LEVEL_KEY, deflateLevel)

case unknown: String =>
log.error(s"unsupported compression codec $unknown")
}

new AvroOutputWriterFactory(dataSchema, recordName, recordNamespace)
}

override def buildReader(
spark: SparkSession,
dataSchema: StructType,
partitionSchema: StructType,
requiredSchema: StructType,
filters: Seq[Filter],
options: Map[String, String],
hadoopConf: Configuration): (PartitionedFile) => Iterator[InternalRow] = {

val broadcastedConf =
spark.sparkContext.broadcast(new AvroFileFormat.SerializableConfiguration(hadoopConf))

(file: PartitionedFile) => {
val log = LoggerFactory.getLogger(classOf[AvroFileFormat])
val conf = broadcastedConf.value.value
val userProvidedSchema = options.get(AvroFileFormat.AvroSchema).map(new Schema.Parser().parse)

// TODO Removes this check once `FileFormat` gets a general file filtering interface method.
// Doing input file filtering is improper because we may generate empty tasks that process no
// input files but stress the scheduler. We should probably add a more general input file
// filtering mechanism for `FileFormat` data sources. See SPARK-16317.
if (
conf.getBoolean(AvroFileFormat.IgnoreFilesWithoutExtensionProperty, true) &&
!file.filePath.endsWith(".avro")
) {
Iterator.empty
} else {
val reader = {
val in = new FsInput(new Path(new URI(file.filePath)), conf)
try {
val datumReader = userProvidedSchema match {
case Some(userSchema) => new GenericDatumReader[GenericRecord](userSchema)
case _ => new GenericDatumReader[GenericRecord]()
}
DataFileReader.openReader(in, datumReader)
} catch {
case NonFatal(e) =>
log.error("Exception while opening DataFileReader", e)
in.close()
throw e
}
}

// Ensure that the reader is closed even if the task fails or doesn't consume the entire
// iterator of records.
Option(TaskContext.get()).foreach { taskContext =>
taskContext.addTaskCompletionListener { _ =>
reader.close()
}
}

reader.sync(file.start)
val stop = file.start + file.length

val rowConverter = SchemaConverters.createConverterToSQL(
userProvidedSchema.getOrElse(reader.getSchema), requiredSchema)

new Iterator[InternalRow] {
// Used to convert `Row`s containing data columns into `InternalRow`s.
private val encoderForDataColumns = RowEncoder(requiredSchema)

private[this] var completed = false

override def hasNext: Boolean = {
if (completed) {
false
} else {
val r = reader.hasNext && !reader.pastSync(stop)
if (!r) {
reader.close()
completed = true
}
r
}
}

override def next(): InternalRow = {
if (reader.pastSync(stop)) {
throw new NoSuchElementException("next on empty iterator")
}
val record = reader.next()
val safeDataRow = rowConverter(record).asInstanceOf[GenericRow]

// The safeDataRow is reused, we must do a copy
encoderForDataColumns.toRow(safeDataRow)
}
}
}
}
}
}

private[avro] object AvroFileFormat {
val IgnoreFilesWithoutExtensionProperty = "avro.mapred.ignore.inputs.without.extension"

val AvroSchema = "avroSchema"

class SerializableConfiguration(@transient var value: Configuration)
extends Serializable with KryoSerializable {
@transient private[avro] lazy val log = LoggerFactory.getLogger(getClass)

private def writeObject(out: ObjectOutputStream): Unit = tryOrIOException {
out.defaultWriteObject()
value.write(out)
}

private def readObject(in: ObjectInputStream): Unit = tryOrIOException {
value = new Configuration(false)
value.readFields(in)
}

private def tryOrIOException[T](block: => T): T = {
try {
block
} catch {
case e: IOException =>
log.error("Exception encountered", e)
throw e
case NonFatal(e) =>
log.error("Exception encountered", e)
throw new IOException(e)
}
}

def write(kryo: Kryo, out: Output): Unit = {
val dos = new DataOutputStream(out)
value.write(dos)
dos.flush()
}

def read(kryo: Kryo, in: Input): Unit = {
value = new Configuration(false)
value.readFields(new DataInputStream(in))
}
}
}
Loading