Skip to content

[SPARK-22797][PySpark] Bucketizer support multi-column #19892

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 11 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 80 additions & 25 deletions python/pyspark/ml/feature.py
Original file line number Diff line number Diff line change
Expand Up @@ -317,26 +317,33 @@ class BucketedRandomProjectionLSHModel(LSHModel, JavaMLReadable, JavaMLWritable)


@inherit_doc
class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,
JavaMLReadable, JavaMLWritable):
"""
Maps a column of continuous features to a column of feature buckets.

>>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)]
>>> df = spark.createDataFrame(values, ["values"])
class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols,
HasHandleInvalid, JavaMLReadable, JavaMLWritable):
"""
Maps a column of continuous features to a column of feature buckets. Since 2.3.0,
:py:class:`Bucketizer` can map multiple columns at once by setting the :py:attr:`inputCols`
parameter. Note that when both the :py:attr:`inputCol` and :py:attr:`inputCols` parameters
are set, an Exception will be thrown. The :py:attr:`splits` parameter is only used for single
column usage, and :py:attr:`splitsArray` is for multiple columns.

>>> values = [(0.1, 0.0), (0.4, 1.0), (1.2, 1.3), (1.5, float("nan")),
... (float("nan"), 1.0), (float("nan"), 0.0)]
>>> df = spark.createDataFrame(values, ["values1", "values2"])
>>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")],
... inputCol="values", outputCol="buckets")
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect()
>>> len(bucketed)
6
>>> bucketed[0].buckets
0.0
>>> bucketed[1].buckets
0.0
>>> bucketed[2].buckets
1.0
>>> bucketed[3].buckets
2.0
... inputCol="values1", outputCol="buckets")
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df.select("values1"))
>>> bucketed.show(truncate=False)
+-------+-------+
|values1|buckets|
+-------+-------+
|0.1 |0.0 |
|0.4 |0.0 |
|1.2 |1.0 |
|1.5 |2.0 |
|NaN |3.0 |
|NaN |3.0 |
+-------+-------+
...
>>> bucketizer.setParams(outputCol="b").transform(df).head().b
0.0
>>> bucketizerPath = temp_path + "/bucketizer"
Expand All @@ -347,6 +354,22 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,
>>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect()
>>> len(bucketed)
4
>>> bucketizer2 = Bucketizer(splitsArray=
... [[-float("inf"), 0.5, 1.4, float("inf")], [-float("inf"), 0.5, float("inf")]],
... inputCols=["values1", "values2"], outputCols=["buckets1", "buckets2"])
>>> bucketed2 = bucketizer2.setHandleInvalid("keep").transform(df)
>>> bucketed2.show(truncate=False)
+-------+-------+--------+--------+
|values1|values2|buckets1|buckets2|
+-------+-------+--------+--------+
|0.1 |0.0 |0.0 |0.0 |
|0.4 |1.0 |0.0 |1.0 |
|1.2 |1.3 |1.0 |1.0 |
|1.5 |NaN |2.0 |2.0 |
|NaN |1.0 |3.0 |1.0 |
|NaN |0.0 |3.0 |0.0 |
+-------+-------+--------+--------+
...

.. versionadded:: 1.4.0
"""
Expand All @@ -363,14 +386,30 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,

handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " +
"Options are 'skip' (filter out rows with invalid values), " +
"'error' (throw an error), or 'keep' (keep invalid values in a special " +
"additional bucket).",
"'error' (throw an error), or 'keep' (keep invalid values in a " +
"special additional bucket). Note that in the multiple column " +
"case, the invalid handling is applied to all columns. That said " +
"for 'error' it will throw an error if any invalids are found in " +
"any column, for 'skip' it will skip rows with any invalids in " +
"any columns, etc.",
typeConverter=TypeConverters.toString)

splitsArray = Param(Params._dummy(), "splitsArray", "The array of split points for mapping " +
"continuous features into buckets for multiple columns. For each input " +
"column, with n+1 splits, there are n buckets. A bucket defined by " +
"splits x,y holds values in the range [x,y) except the last bucket, " +
"which also includes y. The splits should be of length >= 3 and " +
"strictly increasing. Values at -inf, inf must be explicitly provided " +
"to cover all Double values; otherwise, values outside the splits " +
"specified will be treated as errors.",
typeConverter=TypeConverters.toListListFloat)

@keyword_only
def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"):
def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error",
splitsArray=None, inputCols=None, outputCols=None):
"""
__init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error")
__init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
"""
super(Bucketizer, self).__init__()
self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Bucketizer", self.uid)
Expand All @@ -380,9 +419,11 @@ def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="er

@keyword_only
@since("1.4.0")
def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"):
def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error",
splitsArray=None, inputCols=None, outputCols=None):
"""
setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error")
setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
Sets params for this Bucketizer.
"""
kwargs = self._input_kwargs
Expand All @@ -402,6 +443,20 @@ def getSplits(self):
"""
return self.getOrDefault(self.splits)

@since("2.3.0")
def setSplitsArray(self, value):
"""
Sets the value of :py:attr:`splitsArray`.
"""
return self._set(splitsArray=value)

@since("2.3.0")
def getSplitsArray(self):
"""
Gets the array of split points or its default value.
"""
return self.getOrDefault(self.splitsArray)


@inherit_doc
class CountVectorizer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable):
Expand Down
10 changes: 10 additions & 0 deletions python/pyspark/ml/param/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,16 @@ def toListFloat(value):
return [float(v) for v in value]
raise TypeError("Could not convert %s to list of floats" % value)

@staticmethod
def toListListFloat(value):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We need a test case in ParamTypeConversionTests for this new method; see test_list_float for reference.

"""
Convert a value to list of list of floats, if possible.
"""
if TypeConverters._can_convert_to_list(value):
value = TypeConverters.toList(value)
return [TypeConverters.toListFloat(v) for v in value]
raise TypeError("Could not convert %s to list of list of floats" % value)

@staticmethod
def toListInt(value):
"""
Expand Down
9 changes: 9 additions & 0 deletions python/pyspark/ml/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,6 +238,15 @@ def test_bool(self):
self.assertRaises(TypeError, lambda: LogisticRegression(fitIntercept=1))
self.assertRaises(TypeError, lambda: LogisticRegression(fitIntercept="false"))

def test_list_list_float(self):
b = Bucketizer(splitsArray=[[-0.1, 0.5, 3], [-5, 1.5]])
self.assertEqual(b.getSplitsArray(), [[-0.1, 0.5, 3.0], [-5.0, 1.5]])
self.assertTrue(all([type(v) == list for v in b.getSplitsArray()]))
self.assertTrue(all([type(v) == float for v in b.getSplitsArray()[0]]))
self.assertTrue(all([type(v) == float for v in b.getSplitsArray()[1]]))
self.assertRaises(TypeError, lambda: Bucketizer(splitsArray=["a", 1.0]))
self.assertRaises(TypeError, lambda: Bucketizer(splitsArray=[[-5, 1.5], ["a", 1.0]]))


class PipelineTests(PySparkTestCase):

Expand Down