[SPARK-19413][SS] MapGroupsWithState for arbitrary stateful operations for branch-2.1#16850
[SPARK-19413][SS] MapGroupsWithState for arbitrary stateful operations for branch-2.1#16850tdas wants to merge 1 commit intoapache:branch-2.1from
Conversation
`mapGroupsWithState` is a new API for arbitrary stateful operations in Structured Streaming, similar to `DStream.mapWithState`
*Requirements*
- Users should be able to specify a function that can do the following
- Access the input row corresponding to a key
- Access the previous state corresponding to a key
- Optionally, update or remove the state
- Output any number of new rows (or none at all)
*Proposed API*
```
// ------------ New methods on KeyValueGroupedDataset ------------
class KeyValueGroupedDataset[K, V] {
// Scala friendly
def mapGroupsWithState[S: Encoder, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => U)
def flatMapGroupsWithState[S: Encode, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => Iterator[U])
// Java friendly
def mapGroupsWithState[S, U](func: MapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U])
def flatMapGroupsWithState[S, U](func: FlatMapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U])
}
// ------------------- New Java-friendly function classes -------------------
public interface MapGroupsWithStateFunction<K, V, S, R> extends Serializable {
R call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception;
}
public interface FlatMapGroupsWithStateFunction<K, V, S, R> extends Serializable {
Iterator<R> call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception;
}
// ---------------------- Wrapper class for state data ----------------------
trait State[S] {
def exists(): Boolean
def get(): S // throws Exception is state does not exist
def getOption(): Option[S]
def update(newState: S): Unit
def remove(): Unit // exists() will be false after this
}
```
Key Semantics of the State class
- The state can be null.
- If the state.remove() is called, then state.exists() will return false, and getOption will returm None.
- After that state.update(newState) is called, then state.exists() will return true, and getOption will return Some(...).
- None of the operations are thread-safe. This is to avoid memory barriers.
*Usage*
```
val stateFunc = (word: String, words: Iterator[String, runningCount: KeyedState[Long]) => {
val newCount = words.size + runningCount.getOption.getOrElse(0L)
runningCount.update(newCount)
(word, newCount)
}
dataset // type is Dataset[String]
.groupByKey[String](w => w) // generates KeyValueGroupedDataset[String, String]
.mapGroupsWithState[Long, (String, Long)](stateFunc) // returns Dataset[(String, Long)]
```
New unit tests.
Author: Tathagata Das <tathagata.das1565@gmail.com>
Closes apache#16758 from tdas/mapWithState.
|
Test build #72560 has started for PR 16850 at commit |
|
jenkins test this please |
|
Test build #3563 has finished for PR 16850 at commit
|
|
Test build #72586 has finished for PR 16850 at commit
|
|
LGTM. Merging to 2.1. |
…s for branch-2.1 This is a follow up PR for merging #16758 to spark 2.1 branch ## What changes were proposed in this pull request? `mapGroupsWithState` is a new API for arbitrary stateful operations in Structured Streaming, similar to `DStream.mapWithState` *Requirements* - Users should be able to specify a function that can do the following - Access the input row corresponding to a key - Access the previous state corresponding to a key - Optionally, update or remove the state - Output any number of new rows (or none at all) *Proposed API* ``` // ------------ New methods on KeyValueGroupedDataset ------------ class KeyValueGroupedDataset[K, V] { // Scala friendly def mapGroupsWithState[S: Encoder, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => U) def flatMapGroupsWithState[S: Encode, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => Iterator[U]) // Java friendly def mapGroupsWithState[S, U](func: MapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U]) def flatMapGroupsWithState[S, U](func: FlatMapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U]) } // ------------------- New Java-friendly function classes ------------------- public interface MapGroupsWithStateFunction<K, V, S, R> extends Serializable { R call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception; } public interface FlatMapGroupsWithStateFunction<K, V, S, R> extends Serializable { Iterator<R> call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception; } // ---------------------- Wrapper class for state data ---------------------- trait KeyedState[S] { def exists(): Boolean def get(): S // throws Exception is state does not exist def getOption(): Option[S] def update(newState: S): Unit def remove(): Unit // exists() will be false after this } ``` Key Semantics of the State class - The state can be null. - If the state.remove() is called, then state.exists() will return false, and getOption will returm None. - After that state.update(newState) is called, then state.exists() will return true, and getOption will return Some(...). - None of the operations are thread-safe. This is to avoid memory barriers. *Usage* ``` val stateFunc = (word: String, words: Iterator[String, runningCount: KeyedState[Long]) => { val newCount = words.size + runningCount.getOption.getOrElse(0L) runningCount.update(newCount) (word, newCount) } dataset // type is Dataset[String] .groupByKey[String](w => w) // generates KeyValueGroupedDataset[String, String] .mapGroupsWithState[Long, (String, Long)](stateFunc) // returns Dataset[(String, Long)] ``` ## How was this patch tested? New unit tests. Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #16850 from tdas/mapWithState-branch-2.1.
|
Merged. Could you close this PR, please? |
|
Excuse me: |
This is a follow up PR for merging #16758 to spark 2.1 branch
What changes were proposed in this pull request?
mapGroupsWithStateis a new API for arbitrary stateful operations in Structured Streaming, similar toDStream.mapWithStateRequirements
Proposed API
Key Semantics of the State class
Usage
How was this patch tested?
New unit tests.