Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
171 changes: 132 additions & 39 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -4154,8 +4154,6 @@ def convert_RNN(node, **kwargs):
raise NotImplementedError('Currently RNN onnx export only supports bidirectional is False')

num_layers = int(attrs.get('num_layers', '1'))
if num_layers != 1:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1')

p = float(attrs.get('p', '0'))
if p != 0:
Expand All @@ -4179,44 +4177,139 @@ def convert_RNN(node, **kwargs):
initial_h = input_nodes[2]
initial_c = input_nodes[3]

create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([4*state_size], name+'_4*state_size', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])
create_tensor([1, 4*state_size, state_size], name+'_R_shape', kwargs['initializer'])
create_tensor([1, 8*state_size], name+'_B_shape', kwargs['initializer'])
nodes = []

if num_layers == 2:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])

create_tensor([1, 4*state_size, state_size], name+'_WR_shape', kwargs['initializer'])
create_tensor([1, 8*state_size], name+'_B_shape', kwargs['initializer'])

create_tensor([4*4*state_size*state_size], name+'_WR_offset', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size', name+'_input_size']),

# Layer 0
# get W
make_node('Slice', [param, name+'_0', name+'_4*state_size^2'], [name+'_W0_1d']),
make_node('Split', [name+'_W0_1d'], [name+'_W00', name+'_W01', name+'_W02', name+'_W03']),
make_node('Concat', [name+'_W00', name+'_W03', name+'_W01', name+'_W02'], [name+'_W0_'], axis=0),
make_node('Reshape', [name+'_W0_', name+'_WR_shape'], [name+'_W0']),
# get R
make_node('Add', [name+'_4*state_size^2', name+'_4*state_size^2'], [name+'_R0_offset']),
make_node('Slice', [param, name+'_4*state_size^2', name+'_R0_offset'], [name+'_R0_1d']),
make_node('Split', [name+'_R0_1d'], [name+'_R00', name+'_R01', name+'_R02', name+'_R03']),
make_node('Concat', [name+'_R00', name+'_R03', name+'_R01', name+'_R02'], [name+'_R0_'], axis=0),
make_node('Reshape', [name+'_R0_', name+'_WR_shape'], [name+'_R0']),
# get B
make_node('Add', [name+'_WR_offset', name+'_8*state_size'], [name+'_B0_offset']),
make_node('Slice', [param, name+'_WR_offset', name+'_B0_offset'], [name+'_B0_1d']),
make_node('Split', [name+'_B0_1d'], [name+'_B00', name+'_B01', name+'_B02', name+'_B03',
name+'_B04', name+'_B05', name+'_B06', name+'_B07']),
make_node('Concat', [name+'_B00', name+'_B03', name+'_B01', name+'_B02',
name+'_B04', name+'_B07', name+'_B05', name+'_B06'], [name+'_B0_'], axis=0),
make_node('Reshape', [name+'_B0_', name+'_B_shape'], [name+'_B0']),
# get initial states
make_node('Split', [initial_h], [name+'_initial_h0', name+'_initial_h1'], axis=0),
make_node('Split', [initial_c], [name+'_initial_c0', name+'_initial_c1'], axis=0),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# Layer 0 LSTM
make_node('LSTM', [data, name+'_W0', name+'_R0', name+'_B0', name+'_seq_len',
name+'_initial_h0', name+'_initial_c0'],
[name+'_lstm0_out_', name+'_lstm0_h', name+'_lstm0_c'], hidden_size=state_size),
make_node('Squeeze', [name+'_lstm0_out_'], [name+'_lstm0_out'], axes=[1]),

# Layer 1
# get W
make_node('Add', [name+'_R0_offset', name+'_4*state_size^2'], [name+'_W1_offset']),
make_node('Slice', [param, name+'_R0_offset', name+'_W1_offset'], [name+'_W1_1d']),
make_node('Split', [name+'_W1_1d'], [name+'_W10', name+'_W11', name+'_W12', name+'_W13']),
make_node('Concat', [name+'_W10', name+'_W13', name+'_W11', name+'_W12'], [name+'_W1_'], axis=0),
make_node('Reshape', [name+'_W1_', name+'_WR_shape'], [name+'_W1']),
# get R
make_node('Slice', [param, name+'_W1_offset', name+'_WR_offset'], [name+'_R1_1d']),
make_node('Split', [name+'_R1_1d'], [name+'_R10', name+'_R11', name+'_R12', name+'_R13']),
make_node('Concat', [name+'_R10', name+'_R13', name+'_R11', name+'_R12'], [name+'_R1_'], axis=0),
make_node('Reshape', [name+'_R1_', name+'_WR_shape'], [name+'_R1']),
# get B
make_node('Add', [name+'_B0_offset', name+'_8*state_size'], [name+'_B1_offset']),
make_node('Slice', [param, name+'_B0_offset', name+'_B1_offset'], [name+'_B1_1d']),
make_node('Split', [name+'_B1_1d'], [name+'_B10', name+'_B11', name+'_B12', name+'_B13',
name+'_B14', name+'_B15', name+'_B16', name+'_B17']),
make_node('Concat', [name+'_B10', name+'_B13', name+'_B11', name+'_B12',
name+'_B14', name+'_B17', name+'_B15', name+'_B16'], [name+'_B1_'], axis=0),
make_node('Reshape', [name+'_B1_', name+'_B_shape'], [name+'_B1']),
# Layer 1 LSTM
make_node('LSTM', [name+'_lstm0_out', name+'_W1', name+'_R1', name+'_B1', name+'_seq_len',
name+'_initial_h1', name+'_initial_c1'],
[name+'_lstm1_out_', name+'_lstm1_h', name+'_lstm1_c'], hidden_size=state_size),
make_node('Squeeze', [name+'_lstm1_out_'], [name], axes=[1]),
make_node('Concat', [name+'_lstm0_h', name+'_lstm1_h'], [name+'1'], axis=0),
make_node('Concat', [name+'_lstm0_c', name+'_lstm1_c'], [name+'2'], axis=0),
]
elif num_layers == 1:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([4*state_size], name+'_4*state_size', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])
create_tensor([1, 4*state_size, state_size], name+'_R_shape', kwargs['initializer'])
create_tensor([1, 8*state_size], name+'_B_shape', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size', name+'_input_size']),
# get W
make_node('Mul', [name+'_4*state_size', name+'_input_size'], [name+'_mul0']),
make_node('Slice', [param, name+'_0', name+'_mul0'], [name+'_W_1d']),
make_node('Split', [name+'_W_1d'], [name+'_W0', name+'_W1', name+'_W2', name+'_W3']),
make_node('Concat', [name+'_W0', name+'_W3', name+'_W1', name+'_W2'], [name+'_W_'], axis=0),
make_node('Concat', [name+'_1', name+'_4*state_size', name+'_input_size'], [name+'_W_shape'], axis=0),
make_node('Reshape', [name+'_W_', name+'_W_shape'], [name+'_W']),
# get R
make_node('Add', [name+'_mul0', name+'_4*state_size^2'], [name+'_add0']),
make_node('Slice', [param, name+'_mul0', name+'_add0'], [name+'_R_1d']),
make_node('Split', [name+'_R_1d'], [name+'_R0', name+'_R1', name+'_R2', name+'_R3']),
make_node('Concat', [name+'_R0', name+'_R3', name+'_R1', name+'_R2'], [name+'_R_'], axis=0),
make_node('Reshape', [name+'_R_', name+'_R_shape'], [name+'_R']),
# get B
make_node('Add', [name+'_add0', name+'_8*state_size'], [name+'_add1']),
make_node('Slice', [param, name+'_add0', name+'_add1'], [name+'_B_1d']),
make_node('Split', [name+'_B_1d'], [name+'_B0', name+'_B1', name+'_B2', name+'_B3',
name+'_B4', name+'_B5', name+'_B6', name+'_B7']),
make_node('Concat', [name+'_B0', name+'_B3', name+'_B1', name+'_B2',
name+'_B4', name+'_B7', name+'_B5', name+'_B6'], [name+'_B_'], axis=0),
make_node('Reshape', [name+'_B_', name+'_B_shape'], [name+'_B']),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# compute LSTM
make_node('LSTM', [data, name+'_W', name+'_R', name+'_B', name+'_seq_len', initial_h, initial_c],
[name+'0_', name+'1', name+'2'], hidden_size=state_size),
make_node('Squeeze', [name+'0_'], [name], axes=[1]),
]
else:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1 or 2')

return nodes

@mx_op.register('_rnn_param_concat')
def convert_rnn_param_concat(node, **kwargs):
"""Map MXNet’s _rnn_param_concat operator
"""
from onnx.helper import make_node
name, input_nodes, attrs = get_inputs(node, kwargs)

axis = int(attrs.get('dim', 1))

nodes = [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size', name+'_input_size']),
# get W
make_node('Mul', [name+'_4*state_size', name+'_input_size'], [name+'_mul0']),
make_node('Slice', [param, name+'_0', name+'_mul0'], [name+'_W_1d']),
make_node('Split', [name+'_W_1d'], [name+'_W0', name+'_W1', name+'_W2', name+'_W3']),
make_node('Concat', [name+'_W0', name+'_W3', name+'_W1', name+'_W2'], [name+'_W_'], axis=0),
make_node('Concat', [name+'_1', name+'_4*state_size', name+'_input_size'], [name+'_W_shape'], axis=0),
make_node('Reshape', [name+'_W_', name+'_W_shape'], [name+'_W']),
# get R
make_node('Add', [name+'_mul0', name+'_4*state_size^2'], [name+'_add0']),
make_node('Slice', [param, name+'_mul0', name+'_add0'], [name+'_R_1d']),
make_node('Split', [name+'_R_1d'], [name+'_R0', name+'_R1', name+'_R2', name+'_R3']),
make_node('Concat', [name+'_R0', name+'_R3', name+'_R1', name+'_R2'], [name+'_R_'], axis=0),
make_node('Reshape', [name+'_R_', name+'_R_shape'], [name+'_R']),
# get B
make_node('Add', [name+'_add0', name+'_8*state_size'], [name+'_add1']),
make_node('Slice', [param, name+'_add0', name+'_add1'], [name+'_B_1d']),
make_node('Split', [name+'_B_1d'], [name+'_B0', name+'_B1', name+'_B2', name+'_B3',
name+'_B4', name+'_B5', name+'_B6', name+'_B7']),
make_node('Concat', [name+'_B0', name+'_B3', name+'_B1', name+'_B2',
name+'_B4', name+'_B7', name+'_B5', name+'_B6'], [name+'_B_'], axis=0),
make_node('Reshape', [name+'_B_', name+'_B_shape'], [name+'_B']),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# compute LSTM
make_node('LSTM', [data, name+'_W', name+'_R', name+'_B', name+'_seq_len', initial_h, initial_c],
[name+'0_', name+'1', name+'2'], hidden_size=state_size),
make_node('Squeeze', [name+'0_'], [name], axes=[1]),
make_node('Concat', input_nodes, [name], axis=axis)
]

return nodes
53 changes: 53 additions & 0 deletions tests/python-pytest/onnx/test_onnxruntime.py
Original file line number Diff line number Diff line change
Expand Up @@ -720,6 +720,58 @@ def test_distilbert_inference_onnxruntime(tmp_path, model_name):
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model_name', [('standard_lstm_lm_200', 200), ('standard_lstm_lm_650', 650),
('standard_lstm_lm_1500', 1500)])
@pytest.mark.parametrize('seq_length', [16, 32])
def test_standard_rnn_lstm_pretrained_inference_onnxruntime(tmp_path, model_name, seq_length):
try:
import gluonnlp as nlp
ctx = mx.cpu()
dataset= 'wikitext-2'
model, _ = nlp.model.get_model(
name=model_name[0],
ctx=ctx,
pretrained=True,
dataset_name=dataset,
dropout=0)
model.hybridize()

batch = 2
num_hidden = model_name[1]
num_layers = 2
inputs = mx.nd.random.randint(0, 33278, shape=(seq_length, batch),
ctx=ctx).astype('float32')
begin_state = model.begin_state(func=mx.nd.random.uniform, low=0, high=1,
batch_size=batch, dtype='float32', ctx=ctx)
out, out_state= model(inputs, begin_state)

prefix = "%s/standard_rnn_lstm" % tmp_path
model.export(prefix)
sym_file = "%s-symbol.json" % prefix
params_file = "%s-0000.params" % prefix
onnx_file = "%s.onnx" % prefix

input_shapes = [(seq_length, batch), np.shape(begin_state[0]), np.shape(begin_state[1])]
converted_model_path = mx.contrib.onnx.export_model(sym_file, params_file, input_shapes,
[np.float32, np.float32, np.float32],
onnx_file, verbose=True)
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
sess = onnxruntime.InferenceSession(onnx_file, sess_options)

in_tensors = [inputs, begin_state[0], begin_state[1]]
input_dict = dict((sess.get_inputs()[i].name, in_tensors[i].asnumpy()) for i in range(len(in_tensors)))
pred = sess.run(None, input_dict)

assert_almost_equal(out, pred[2])
assert_almost_equal(out_state[0], pred[0])
assert_almost_equal(out_state[1], pred[1])

finally:
shutil.rmtree(tmp_path)


@with_seed()
@pytest.mark.parametrize('model_name', ['mobilenet1.0', 'inceptionv3', 'darknet53', 'resnest14'])
def test_dynamic_shape_cv_inference_onnxruntime(tmp_path, model_name):
Expand Down Expand Up @@ -815,3 +867,4 @@ def test_dynamic_shape_bert_inference_onnxruntime(tmp_path, model):

finally:
shutil.rmtree(tmp_path)

30 changes: 20 additions & 10 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -1214,13 +1214,23 @@ def test_onnx_export_sequence_reverse(tmp_path, dtype, params):

# onnx LSTM from opset 11 does not support float64
@pytest.mark.parametrize('dtype', ['float32'])
@pytest.mark.parametrize('state_size', [128, 256, 512])
def test_onnx_export_RNN(tmp_path, dtype, state_size):
# the current implementation fails assertion checks for large parm/state_size.
M = def_model('RNN', mode='lstm', state_size=state_size, state_outputs=True, num_layers=1, p=0)
x = mx.nd.random.normal(0, 10, (38, 1, 300), dtype=dtype)
batch_size = np.shape(x)[1]
input_size = np.shape(x)[2]
param = mx.nd.random.normal(0, 1, [4*state_size*input_size + 4*state_size*state_size + 8*state_size], dtype=dtype)
state = mx.nd.random.uniform(-1, 1, [1, batch_size, state_size], dtype=dtype)
cell = mx.nd.random.uniform(-1, 1, [1, batch_size, state_size], dtype=dtype)
@pytest.mark.parametrize('state_size', [32, 40])
@pytest.mark.parametrize('input_size', [32, 40, 64])
@pytest.mark.parametrize('num_layers', [1, 2])
@pytest.mark.parametrize('batch_size', [1, 3, 5])
@pytest.mark.parametrize('seq_length', [16, 32])
def test_onnx_export_RNN(tmp_path, dtype, state_size, input_size, num_layers, batch_size, seq_length):
# TODO: The current implementation fails assertion checks for large parm/state_size.

# for num_layers >= 2, input_size must equal to state_size
if num_layers >= 2 and input_size != state_size:
return

M = def_model('RNN', mode='lstm', state_size=state_size, state_outputs=True, num_layers=num_layers, p=0)
x = mx.nd.random.normal(0, 10, (seq_length, batch_size, input_size), dtype=dtype)
param = mx.nd.random.normal(0, 1, [num_layers*4*state_size*input_size +
num_layers*4*state_size*state_size +
num_layers*8*state_size], dtype=dtype)
state = mx.nd.random.uniform(-1, 1, [num_layers, batch_size, state_size], dtype=dtype)
cell = mx.nd.random.uniform(-1, 1, [num_layers, batch_size, state_size], dtype=dtype)
op_export_test('rnn', M, [x, param, state, cell], tmp_path)