Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 41 additions & 29 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@

def parse_helper(attrs, attrs_name, alt_value=None):
"""Helper function to parse operator attributes in required format."""
tuple_re = re.compile('\([0-9L|,| ]+\)')
tuple_re = re.compile(r'\([0-9L|,| ]+\)')
if not attrs:
return alt_value
attrs_str = None if attrs.get(attrs_name) is None else str(attrs.get(attrs_name))
Expand Down Expand Up @@ -187,7 +187,7 @@ def create_tensor(shape_list, shape_name, initializer, dtype='int64'):
data_type=data_type,
dims=dims,
vals=shape_list,
raw=False,
raw=False
)
)

Expand Down Expand Up @@ -2543,13 +2543,13 @@ def convert_zeros_like(node, **kwargs):
"""Map MXNet's zeros_like operator attributes to onnx's ConstantOfShape operator.
"""
from onnx.helper import make_node, make_tensor
name, _, _ = get_inputs(node, kwargs)
name, input_nodes, _ = get_inputs(node, kwargs)

# create tensor with shape of input
create_const_node(name+"_shape", np.array(kwargs['in_shape'][0], dtype='int64'), kwargs)
tensor_value = make_tensor(name+"_zero", kwargs['in_type'], [1], [0])
nodes = [
make_node("ConstantOfShape", [name+"_shape"], [name], value=tensor_value)
make_node("Shape", [input_nodes[0]], [name+"_shape"]),
make_node("ConstantOfShape", [name+"_shape"], [name], name=name, value=tensor_value)
]
return nodes

Expand All @@ -2559,40 +2559,52 @@ def convert_arange_like(node, **kwargs):
"""Map MXNet's arange_like operator attributes to onnx's Range and Reshape operators.
"""
from onnx.helper import make_node
name, _, attrs = get_inputs(node, kwargs)
name, input_nodes, attrs = get_inputs(node, kwargs)

opset_version = kwargs['opset_version']
if opset_version < 11:
raise AttributeError("ONNX opset 11 or greater is required to export this operator")

input_type = kwargs['in_type']
dtype = onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[input_type]
in_shape = kwargs['in_shape']
axis = attrs.get('axis')
axis = attrs.get('axis', 'None')
start = attrs.get('start', 0.)
step = attrs.get('step', 1.)
repeat = int(attrs.get('repeat', 1))
if repeat != 1:
raise NotImplementedError("arange_like operator with repeat != 1 not yet implemented.")

if axis is None:
create_const_scalar_node(name+"_start", np.array([start], dtype=dtype), kwargs)
create_const_scalar_node(name+"_step", np.array([step], dtype=dtype), kwargs)
create_const_scalar_node(name+"_half_step", np.array([float(step)*0.5], dtype=dtype), kwargs)
create_tensor([], name+'_void', kwargs["initializer"])
if axis == 'None':
# output will be same shape as input
output_shape = in_shape[0]
nodes = [
make_node('Shape', [input_nodes[0]], [name+"_shape0_out"]),
make_node("ReduceProd", [name+"_shape0_out"], [name+"_redprod0_out"]),
make_node('Reshape', [name+'_redprod0_out', name+'_void'], [name+'_reshape0_out']),
make_node("Cast", [name+"_reshape0_out"], [name+"_cast0_out"], to=input_type),
make_node("Mul", [name+"_cast0_out", name+"_step"], [name+"_mul0_out"]),
make_node("Add", [name+"_mul0_out", name+"_start"], [name+"_add1_out"]),
make_node("Sub", [name+"_add1_out", name+"_half_step"], [name+"_sub0_out"]),
make_node("Range", [name+"_start", name+"_sub0_out", name+"_step"], [name+"_range0_out"]),
make_node("Reshape", [name+"_range0_out", name+"_shape0_out"], [name], name=name)
]
else:
# determine shape of axis
output_shape = [in_shape[0][int(axis)]]

start = np.array([attrs.get('start', 0.)], dtype=dtype)
step = np.array([attrs.get('step', 1.)], dtype=dtype)
repeat = np.array([attrs.get('repeat', 1)], dtype=dtype)
if repeat != 1:
raise NotImplementedError("arange_like operator with repeat != 1 not yet implemented.")

tot_elements = np.prod(output_shape)
limit = np.array([start + (tot_elements * step)], dtype=dtype)
create_tensor([int(axis)], name+"_axis_start", kwargs["initializer"], dtype='int64')
create_tensor([int(axis)+1], name+"_axis_end", kwargs["initializer"], dtype='int64')
nodes = [
make_node('Shape', [input_nodes[0]], [name+"_shape0_out"]),
make_node('Slice', [name+"_shape0_out", name+"_axis_start", name+"_axis_end"], [name+"_slice0_out"]),
make_node("ReduceProd", [name+"_slice0_out"], [name+"_reprod0_out"]),
make_node('Reshape', [name+'_reprod0_out', name+'_void'], [name+'_reshape0_out']),
make_node("Cast", [name+"_reshape0_out"], [name+"_cast0_out"], to=input_type),
make_node("Mul", [name+"_cast0_out", name+"_step"], [name+"_mul0_out"]),
make_node("Add", [name+"_mul0_out", name+"_start"], [name+"_add1_out"]),
make_node("Sub", [name+"_add1_out", name+"_half_step"], [name+"_sub0_out"]),
make_node("Range", [name+"_start", name+"_sub0_out", name+"_step"], [name], name=name)
]

# create constant inputs
nodes = [
create_const_scalar_node(name+"_start", start, kwargs),
create_const_scalar_node(name+"_limit", limit, kwargs),
create_const_scalar_node(name+"_step", step, kwargs),
create_const_node(name+"_shape", np.array(output_shape, dtype='int64'), kwargs),
make_node("Range", [name+"_start", name+"_limit", name+"_step"], [name+"_range0_out"]),
make_node("Reshape", [name+"_range0_out", name+"_shape"], [name])
]
return nodes
10 changes: 7 additions & 3 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,13 @@ def test_onnx_export_zeros_like(tmp_path):


@pytest.mark.parametrize("dtype", ["float32", "float64"])
def test_onnx_export_arange_like(tmp_path, dtype):
M = def_model('contrib.arange_like')
x = mx.nd.array([[-2,-1,0],[0,50,99],[4,5,6],[7,8,9]], dtype=dtype)
@pytest.mark.parametrize("axis", [None,0,1])
@pytest.mark.parametrize("start", [0, 0.5, 1])
@pytest.mark.parametrize("step", [0.01, 0.1, 0.5, 1])
@pytest.mark.parametrize("test_data", [ mx.random.uniform(0, 1, (10,20)), [[0,1,2,3,4,5],[4,5,6,7,8,9],[8,9,10,11,12,13]]])
def test_onnx_export_arange_like(tmp_path, dtype, axis, start, step, test_data):
M = def_model('contrib.arange_like', axis=axis, start=start, step=step)
x = mx.nd.array(test_data, dtype=dtype)
op_export_test('arange_like', M, [x], tmp_path)


Expand Down