Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AggregateExec: Take grouping sets into account for InputOrderMode #11301

Merged
merged 3 commits into from
Jul 7, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 109 additions & 8 deletions datafusion/physical-plan/src/aggregates/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -369,14 +369,21 @@ impl AggregateExec {
new_requirement.extend(req);
new_requirement = collapse_lex_req(new_requirement);

let input_order_mode =
if indices.len() == groupby_exprs.len() && !indices.is_empty() {
InputOrderMode::Sorted
} else if !indices.is_empty() {
InputOrderMode::PartiallySorted(indices)
} else {
InputOrderMode::Linear
};
let indices: Vec<usize> = indices
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I recommend adding a comment here (perhaps copied from the description of the PR) explaining the subtelty involving grouping sets

.into_iter()
.filter(|idx| group_by.groups.iter().all(|group| !group[*idx]))
.collect();

let input_order_mode = if indices.len() == groupby_exprs.len()
&& !indices.is_empty()
&& group_by.groups.len() == 1
{
InputOrderMode::Sorted
} else if !indices.is_empty() {
InputOrderMode::PartiallySorted(indices)
} else {
InputOrderMode::Linear
};

// construct a map from the input expression to the output expression of the Aggregation group by
let projection_mapping =
Expand Down Expand Up @@ -1180,6 +1187,7 @@ mod tests {
use arrow::array::{Float64Array, UInt32Array};
use arrow::compute::{concat_batches, SortOptions};
use arrow::datatypes::DataType;
use arrow_array::{Float32Array, Int32Array};
use datafusion_common::{
assert_batches_eq, assert_batches_sorted_eq, internal_err, DataFusionError,
ScalarValue,
Expand All @@ -1195,7 +1203,10 @@ mod tests {
use datafusion_physical_expr::expressions::{lit, OrderSensitiveArrayAgg};
use datafusion_physical_expr::PhysicalSortExpr;

use crate::common::collect;
use datafusion_expr::Expr;
use datafusion_physical_expr_common::aggregate::create_aggregate_expr;
use datafusion_physical_expr_common::expressions::Literal;
use futures::{FutureExt, Stream};

// Generate a schema which consists of 5 columns (a, b, c, d, e)
Expand Down Expand Up @@ -2267,4 +2278,94 @@ mod tests {
assert_eq!(new_agg.schema(), aggregate_exec.schema());
Ok(())
}

#[tokio::test]
async fn test_agg_exec_group_by_const() -> Result<()> {
let schema = Arc::new(Schema::new(vec![
Field::new("a", DataType::Float32, true),
Field::new("b", DataType::Float32, true),
Field::new("const", DataType::Int32, false),
]));

let col_a = col("a", &schema)?;
let col_b = col("b", &schema)?;
let const_expr = Arc::new(Literal::new(ScalarValue::Int32(Some(1))));

let groups = PhysicalGroupBy::new(
vec![
(col_a, "a".to_string()),
(col_b, "b".to_string()),
(const_expr, "const".to_string()),
],
vec![
(
Arc::new(Literal::new(ScalarValue::Float32(None))),
"a".to_string(),
),
(
Arc::new(Literal::new(ScalarValue::Float32(None))),
"b".to_string(),
),
(
Arc::new(Literal::new(ScalarValue::Int32(None))),
"const".to_string(),
),
],
vec![
vec![false, true, true],
vec![true, false, true],
vec![true, true, false],
],
);

let aggregates: Vec<Arc<dyn AggregateExpr>> = vec![create_aggregate_expr(
count_udaf().as_ref(),
&[lit(1)],
&[Expr::Literal(ScalarValue::Int32(Some(1)))],
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you could make this more concise like this (and ensure the type is correct)

Suggested change
&[Expr::Literal(ScalarValue::Int32(Some(1)))],
&[lit(1i32)],

&[],
&[],
schema.as_ref(),
"1",
false,
false,
)?];

let input_batches = (0..4)
.map(|_| {
let a = Arc::new(Float32Array::from(vec![0.; 8192]));
let b = Arc::new(Float32Array::from(vec![0.; 8192]));
let c = Arc::new(Int32Array::from(vec![1; 8192]));

RecordBatch::try_new(schema.clone(), vec![a, b, c]).unwrap()
})
.collect();

let input =
Arc::new(MemoryExec::try_new(&[input_batches], schema.clone(), None)?);

let aggregate_exec = Arc::new(AggregateExec::try_new(
AggregateMode::Partial,
groups,
aggregates.clone(),
vec![None],
input,
schema,
)?);

let output =
collect(aggregate_exec.execute(0, Arc::new(TaskContext::default()))?).await?;

let expected = [
"+-----+-----+-------+----------+",
"| a | b | const | 1[count] |",
"+-----+-----+-------+----------+",
"| | 0.0 | | 32768 |",
"| 0.0 | | | 32768 |",
"| | | 1 | 32768 |",
"+-----+-----+-------+----------+",
];
assert_batches_sorted_eq!(expected, &output);

Ok(())
}
}
Loading