Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RecordBatch normalization (flattening) #6758

Open
wants to merge 16 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Additional documentation for normalize functions. Switched Schema
… normalization to iterative approach.
  • Loading branch information
nglime committed Dec 31, 2024
commit 4422add041b6decabe7455a4986362f0c1cc01e6
84 changes: 60 additions & 24 deletions arrow-array/src/record_batch.rs
Original file line number Diff line number Diff line change
Expand Up @@ -397,50 +397,86 @@ impl RecordBatch {
}

/// Normalize a semi-structured [`RecordBatch`] into a flat table.
/// If `max_level` is 0, normalizes all levels.
///
/// If max_level is 0, normalizes all levels.
/// # Example
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_array::{ArrayRef, Int64Array, StringArray, StructArray, RecordBatch};
/// # use arrow_schema::{DataType, Field, Fields, Schema};
///
/// let animals: ArrayRef = Arc::new(StringArray::from(vec!["Parrot", ""]));
/// let n_legs: ArrayRef = Arc::new(Int64Array::from(vec![Some(2), Some(4)]));
///
/// let animals_field = Arc::new(Field::new("animals", DataType::Utf8, true));
/// let n_legs_field = Arc::new(Field::new("n_legs", DataType::Int64, true));
///
/// let a = Arc::new(StructArray::from(vec![
/// (animals_field.clone(), Arc::new(animals.clone()) as ArrayRef),
/// (n_legs_field.clone(), Arc::new(n_legs.clone()) as ArrayRef),
/// ]));
///
/// let schema = Schema::new(vec![
/// Field::new(
/// "a",
/// DataType::Struct(Fields::from(vec![animals_field, n_legs_field])),
/// false,
/// )
/// ]);
///
/// let normalized = RecordBatch::try_new(Arc::new(schema), vec![a])
/// .expect("valid conversion")
/// .normalize(".", 0)
/// .expect("valid normalization");
///
/// let expected = RecordBatch::try_from_iter_with_nullable(vec![
/// ("a.animals", animals.clone(), true),
/// ("a.n_legs", n_legs.clone(), true),
/// ])
/// .expect("valid conversion");
///
/// assert_eq!(expected, normalized);
/// ```
pub fn normalize(&self, separator: &str, mut max_level: usize) -> Result<Self, ArrowError> {
if max_level == 0 {
max_level = usize::MAX;
}
if self.num_rows() == 0 {
// No data, only need to normalize the schema
return Ok(Self::new_empty(Arc::new(
self.schema.normalize(separator, max_level)?,
)));
}
let mut queue: VecDeque<(usize, (ArrayRef, FieldRef))> = VecDeque::new();

let mut queue: VecDeque<(usize, &ArrayRef, Vec<&str>, &DataType, bool)> = VecDeque::new();
for (c, f) in self.columns.iter().zip(self.schema.fields()) {
queue.push_back((0, ((*c).clone(), (*f).clone())));
let name_vec: Vec<&str> = vec![f.name()];
queue.push_back((0, c, name_vec, f.data_type(), f.is_nullable()));
}

let mut columns: Vec<ArrayRef> = Vec::new();
let mut fields: Vec<FieldRef> = Vec::new();

while let Some((depth, (c, f))) = queue.pop_front() {
while let Some((depth, c, name, data_type, nullable)) = queue.pop_front() {
if depth < max_level {
match f.data_type() {
match data_type {
DataType::Struct(ff) => {
// Need to zip these in reverse to maintain original order
for (cff, fff) in c.as_struct().columns().iter().zip(ff.into_iter()).rev() {
let new_key = format!("{}{}{}", f.name(), separator, fff.name());
let updated_field = Field::new(
new_key.as_str(),
fff.data_type().clone(),
let mut name = name.clone();
name.push(separator);
name.push(fff.name().as_str());
queue.push_front((
depth + 1,
cff,
name.clone(),
fff.data_type(),
fff.is_nullable(),
);
queue.push_front((depth + 1, (cff.clone(), Arc::new(updated_field))))
))
}
}
_ => {
columns.push(c);
fields.push(f);
let updated_field = Field::new(name.concat(), data_type.clone(), nullable);
columns.push(c.clone());
fields.push(Arc::new(updated_field));
}
}
} else {
columns.push(c);
fields.push(f);
let updated_field = Field::new(name.concat(), data_type.clone(), nullable);
fields.push(Arc::new(updated_field));
}
}
RecordBatch::try_new(Arc::new(Schema::new(fields)), columns)
Expand Down Expand Up @@ -1250,7 +1286,7 @@ mod tests {
}

#[test]
fn normalize() {
fn normalize_simple() {
let animals: ArrayRef = Arc::new(StringArray::from(vec!["Parrot", ""]));
let n_legs: ArrayRef = Arc::new(Int64Array::from(vec![Some(2), Some(4)]));
let year: ArrayRef = Arc::new(Int64Array::from(vec![None, Some(2022)]));
Expand Down
129 changes: 63 additions & 66 deletions arrow-schema/src/schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
// specific language governing permissions and limitations
// under the License.

use std::collections::HashMap;
use std::collections::{HashMap, VecDeque};
use std::fmt;
use std::hash::Hash;
use std::sync::Arc;
Expand Down Expand Up @@ -413,79 +413,76 @@ impl Schema {
&self.metadata
}

/// Returns a new schema, normalized based on the max_level
/// This carries metadata from the parent schema over as well
/// Returns a new schema, normalized based on the max_level field.
/// If `max_level` is 0, normalizes all levels.
///
/// This carries metadata from the parent schema over.
///
/// # Example
///
/// ```
/// # use std::sync::Arc;
/// # use arrow_schema::{DataType, Field, Fields, Schema};
///
/// let schema = Schema::new(vec![
/// Field::new(
/// "a",
/// DataType::Struct(Fields::from(vec![
/// Arc::new(Field::new("animals", DataType::Utf8, true)),
/// Arc::new(Field::new("n_legs", DataType::Int64, true)),
/// ])),
/// false,
/// ),
/// ])
/// .normalize(".", 0)
/// .expect("valid normalization");
///
/// let expected = Schema::new(vec![
/// Field::new("a.animals", DataType::Utf8, true),
/// Field::new("a.n_legs", DataType::Int64, true),
/// ]);
///
/// assert_eq!(schema, expected);
/// ```
pub fn normalize(&self, separator: &str, mut max_level: usize) -> Result<Self, ArrowError> {
ngli-me marked this conversation as resolved.
Show resolved Hide resolved
if max_level == 0 {
max_level = usize::MAX;
}
let mut new_fields: Vec<FieldRef> = vec![];
for field in self.fields() {
match field.data_type() {
DataType::Struct(nested_fields) => {
let field_name = field.name().as_str();
new_fields = [
new_fields,
Self::normalizer(
nested_fields.to_vec(),
field_name,
separator,
max_level - 1,
),
]
.concat();
}
_ => new_fields.push(Arc::new(Field::new(
field.name(),
field.data_type().clone(),
field.is_nullable(),
))),
};
let mut queue: VecDeque<(usize, Vec<&str>, &DataType, bool)> = VecDeque::new();
for f in self.fields() {
let name_vec: Vec<&str> = vec![f.name()];
queue.push_back((0, name_vec, f.data_type(), f.is_nullable()));
}
Ok(Self::new_with_metadata(new_fields, self.metadata.clone()))
}

fn normalizer(
fields: Vec<FieldRef>,
key_string: &str,
separator: &str,
max_level: usize,
) -> Vec<FieldRef> {
let mut new_fields: Vec<FieldRef> = vec![];
if max_level > 0 {
for field in fields {
match field.data_type() {
DataType::Struct(nested_fields) => {
let field_name = field.name().as_str();
let new_key = format!("{key_string}{separator}{field_name}");
new_fields = [
new_fields,
Self::normalizer(
nested_fields.to_vec(),
new_key.as_str(),
separator,
max_level - 1,
),
]
.concat();
let mut fields: Vec<FieldRef> = Vec::new();

while let Some((depth, name, data_type, nullable)) = queue.pop_front() {
if depth < max_level {
match data_type {
DataType::Struct(ff) => {
// Need to zip these in reverse to maintain original order
for fff in ff.into_iter().rev() {
let mut name = name.clone();
name.push(separator);
name.push(fff.name().as_str());
queue.push_front((
depth + 1,
name.clone(),
fff.data_type(),
fff.is_nullable(),
))
}
}
_ => new_fields.push(Arc::new(Field::new(
format!("{key_string}{separator}{}", field.name()),
field.data_type().clone(),
field.is_nullable(),
))),
};
}
} else {
for field in fields {
new_fields.push(Arc::new(Field::new(
format!("{key_string}{separator}{}", field.name()),
field.data_type().clone(),
field.is_nullable(),
)));
_ => {
let updated_field = Field::new(name.concat(), data_type.clone(), nullable);
fields.push(Arc::new(updated_field));
}
}
} else {
let updated_field = Field::new(name.concat(), data_type.clone(), nullable);
fields.push(Arc::new(updated_field));
}
}
new_fields
Ok(Schema::new(fields))
}

/// Look up a column by name and return a immutable reference to the column along with
Expand Down
Loading