├── ATP_Interactions
│ ├── Script.py
│ └── train.data
├── AntiFungal_Peptides
│ ├── AAC_test.csv
│ ├── AAC_train.csv
│ ├── CellBots_SVM.py
│ ├── DP2F_test.csv
│ ├── DP2F_train.csv
│ ├── test.csv
│ └── train.csv
├── DNA_Sequence_Matching
│ ├── 1ifp.pdb
│ ├── DNA.fa
│ ├── Q1.py
│ ├── Q2.py
│ ├── Q3.py
│ └── protein.fa
├── Interacting_Patterns
│ ├── 58_script.py
│ ├── README.pdf
│ ├── test_data.csv
│ └── train_data.csv
├── Peptide_Classification
│ ├── 58_script.py
│ ├── README.pdf
│ ├── test.csv
│ └── train.csv
└── README.md
Aim to predict ATP interacting residues in a protein. Kaggle
Model : Balanced Bagging Classifier with SVM(C=2, gamma=0.1, Kernel="rbf")
Score : 0.65072
Aim to predict AntiFungal Peptides. Kaggle
Model : SVM(C = 5 , gamma = 0.003)
Score : 0.86444
Aim to predict Interacting Peptideds. Kaggle
Model : estimators = [ ('rf', RandomForestClassifier(n_estimators=300, max_depth=45, min_samples_leaf=7, random_state=r)), ('mlp', MLPClassifier(max_iter=200,random_state=r)), ('knn', KNeighborsClassifier(n_neighbors=4))]
clf = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression( random_state=r), n_jobs=-1, verbose = 3)
Score : 0.64764
Aim to classify Peptides. Kaggle
Model : BaggingClassifier(base_estimator = RandomForestClassifier(random_state = 2), n_estimators = 100, random_state = 2, n_jobs = -1)
Score : 0.78620
Computations on DNA Sequences.
python Qx.py -i __inputFile__ -o __outputFile__